

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

February 2017

FDS4675_F085 40V P-Channel PowerTrench[®] MOSFET

General Description

This P-Channel MOSFET is a rugged gate version of On Semiconductor's advanced PowerTranch process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5 V - 20 V).

Applications

- Power management
- Load switch
- Battery protection

Features

- -11 A, -40 V $R_{DS(ON)} = 0.013 \Omega @ V_{GS} = -10 V$ $R_{DS(ON)} = 0.017 \Omega @ V_{GS} = -4.5 V$
- Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}

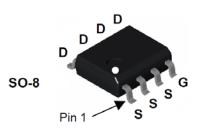
4

3

2

1

- High power and current handling capability
- Qualified to AEC Q101


5

6

7

8

RoHS Compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-40	V
V _{GSS}	Gate-Source Voltage		±20	V
	Drain Current	Continuous	-11 ^(Note 1a)	А
I _D		Pulsed	-50	А
	Power Dissipation for Single Operation		2.4 (steady state) (Note 1a)	W
PD			1.4 ^(Note 1b)	W
			1.2 ^(Note 1c)	W
T_J, T_{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
Thermal	Characteristics		· · ·	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient		62.5 (steady state), 50 (10 sec) ^(Note 1a)	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient		125 ^(Note 1c)	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case		25 ^(Note 1)	°C/W

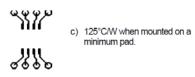
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS4675	FDS4675_F085	13"	12mm	2500 units

FDS4675_
′5_F085
— 40V
P-Chani
nelTrenc
م ®
MOSFET

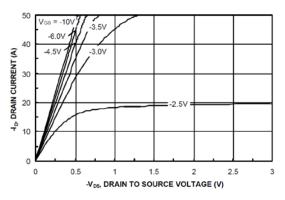
٦

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
off Characterist	ics	•				
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-40			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, Referenced to $25^{\circ}C$		-34		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -32 V_{,} V_{GS} = 0 V$			-1	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 V, V_{DS} = 0 V$			-100	nA
n Characterist	ics (Note 2)	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1	-1.4	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250\mu A$, Referenced to 25°C		4.6		mV/°0
		V _{GS} = -10 V, I _D = -11 A		10	13	
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} = -4.5 V, I _D = -9.5 A		13	17	mΩ
- (-)		V _{GS} = -10 V, I _D = -11 A, T _J = 125℃		15	21	
g _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -11 A$		44		S
ynamic Charac	cteristics			•		
C _{ISS}	Input Capacitance			4350		pF
Coss	Output Capacitance	V_{DS} = -20 V, V_{GS} = 0 V, f = 1 MHz		622		pF
C _{RSS}	Reverse Transfer Capacitance	7		290		pF
witching Chara	acteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time			40	64	ns
tr	Turn-On Rise Time	$_{DD} = -20 \text{ V}, \text{ I}_{D} = -1 \text{ A}$		49	79	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		100	160	ns
t _f	Turn-Off Fall Time			60	96	ns
Qg	Total Gate Charge			40	56	nC
Q_{gs}	Gate-Source Charge	$V_{DS} = -20 \text{ V}, \text{ I}_{D} = -11 \text{ A}, \text{ V}_{GS} = -4.5 \text{ V}$		11		nC
Q_{gd}	Gate-Drain Charge			13		nC
rain-Source Di	ode Characteristics and Maximum Rat	tings				
ls	Maximum Continuous Drain-Source	Diode Forward Current			-2.1	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ A}, \text{ I}_{S} = -2.1 \text{ A}^{(Note 2)}$		-0.7	-1.2	V

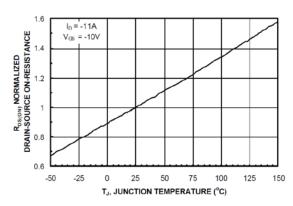

R_{nJA} is the sum of the junction to case and case to ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{nJC} is guaranteed by design while R_{nCA} is determined by the user's board design.

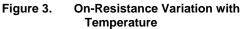
a) 50°C/W when mounted on a 1in2 pad of 2 oz copper

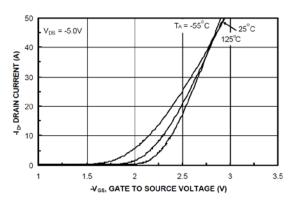
b) 105°C/W when mounted on a .04 in² pad of 2 oz copper

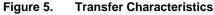


Scale 1:1 on letter size paper


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%




Typical Characteristics



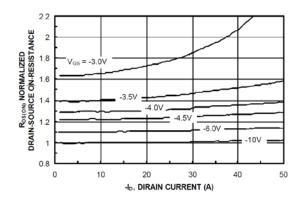


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

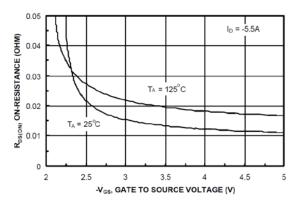


Figure 4. On-Resistance Variation with Gate to Source Voltage

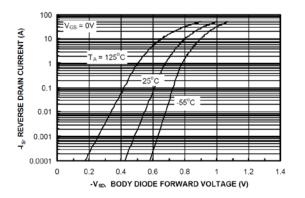
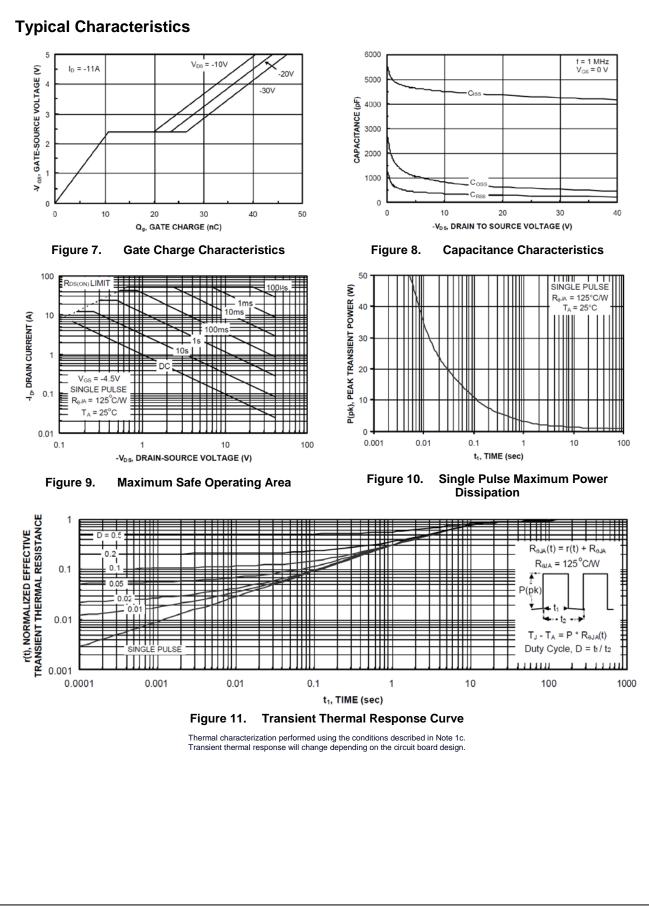
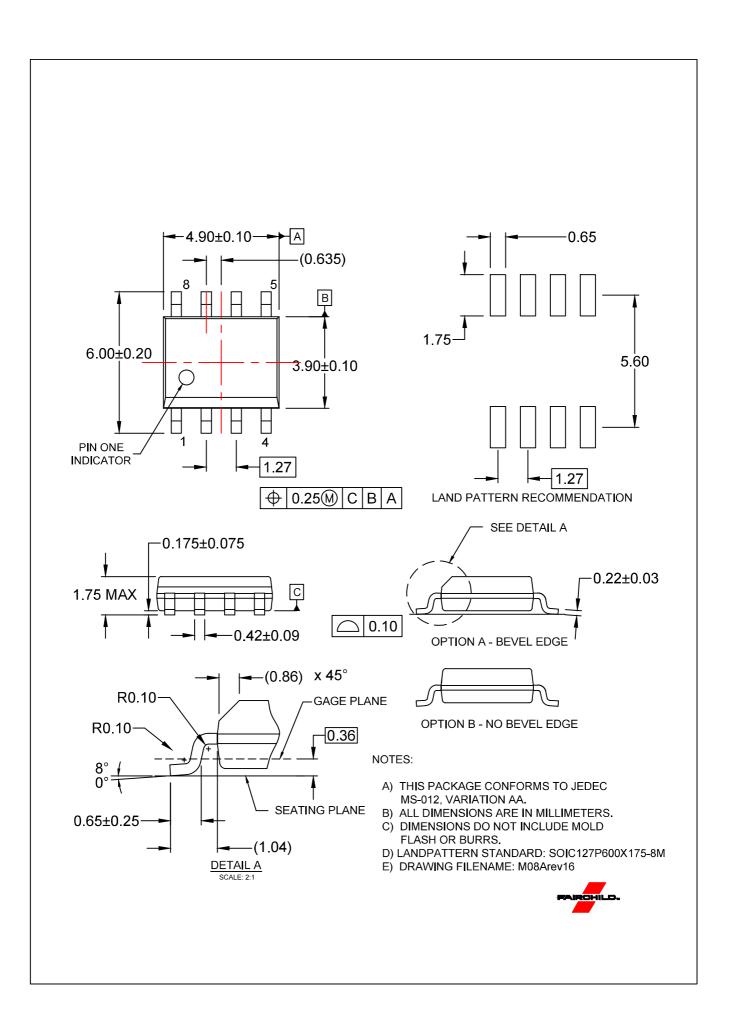




Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDS4675_F085 — 40V P-ChannelTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC