

Revision History 16Gb AS4C512M32MD3-15BCN - 178 ball FBGA PACKAGE

Revision	Details	Date
Rev 1.0	Preliminary datasheet	Nov. 2016
Rev 1.1	Pin Assignment revise	Aug. 2017

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211 Alliance Memory Inc. reserves the right to change products or specification without notice

HIGH PERFORMANCE 16Gbit LPDDR3 SDRAM 8 BANKS X 32Mbit X 32 X 2 CS

Specifications

- Density : 16G bits
- Organization :
 - 32M words x 32 bits x 8 banks x 2 \overline{CS}
- Package :
 - 178-ball FBGA
 - Lead-free (RoHS compliant) and Halogen-free
- Power supply :
 - VDD1 = 1.8V (1.7V~1.95V)
 - VDD2/VDDQ/VDDCA = 1.2V (1.14V~1.3V)
- HSUL_12 interface (High Speed Unterminated Logic 1.2V)
- Data rate :
 - 1333Mbps RL=10
- RL / WL select setA / setB
- Driver strength :
 - Typical: 34.3/40/48/60/80 Ω
 - PD34.3_PU40 / PD40_PU48 / PD34.3_PU48
- ODT: RZQ/4, RZQ/2, RZQ/1 (RZQ = 240 Ω)
- Operating case temperature range
 - Commercial Tc = -25°C to +85°C

Features

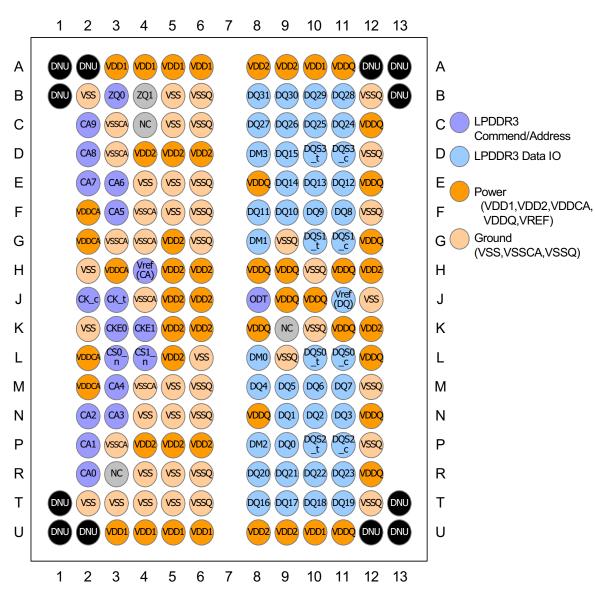
- Low power consumption
- Eight-bit prefetch DDR architecture and BL8 only
- Eight internal banks for concurrent operation
- Double data rate architecture for command, address and data Bus
- Bidirectional and differential data strobe per byte of data (DQS and DQS)
- DQS is edge-aligned with data for READs, centeraligned with data for WRITEs
- Differential clock inputs (CK and \overline{CK})
- Data mask (DM) for write data
- Programmable READ and WRITE latencies (RL/WL)
- Auto Refresh and Self Refresh
- Per-bank refresh for concurrent operation
- Partial-array self refresh (PASR)
- On-chip temperature sensor to control self refresh rate for temperature compensated self refresh (TCSR)
- Deep power-down mode (DPD)
- Selectable output drive strength (DS)
- Selectable On-Die Termination
- CA Training
- Write leveling via MR setting
- Clock stop capability
- DQ calibration offering specific DQ output patterns
- ZQ calibration

Table 1. Ordering Information

Product part No	Org	Temperature	Max Clock (MHz)	Package	
AS4C512M32MD3-15BCN	512M x 32	Commercial -25°C to +85°C	667	178-ball FBGA	

Table 2. Speed Grade Information

Speed Grade	Clock Frequency	Read latency (RL)	Write Latency (Set A)	Clock Cycle Time (tCK)
LPDDR3-1333	667 MHz	10	6	1.5



16Gb LPDDR3 SDRAM Signals and Addressing

Configuration	512Mb x 32
CS	CS0, CS1
CKE	CKE0, CKE1
CK, CK	CK, CK
DQ	[31:0]
DQS / DM	[3:0] / [3:0]
СА	[9:0]
Bank Address	BA0 ~ BA2
Row Address	R0 ~ R13
Column Address	C0 ~ C10

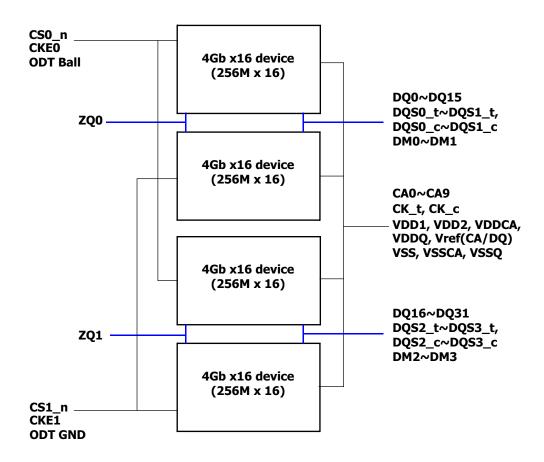
Pin Assignment - 11.0mmX11.5mm 178B FBGA

<Top View>

Notes:

1. Do Not Use (DNU)

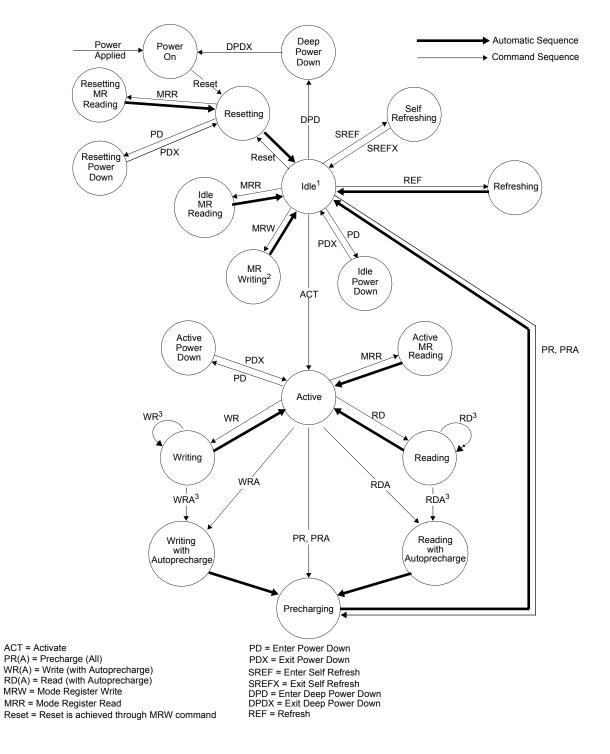
2. Top view, A1 in Top Left Corner



Signal Pin Description

Pin	Туре	Function
CK, CK (CK_t, CK_c)	Input	Clock : CK and \overline{CK} are differential clock inputs. All CA inputs are sampled on both rising and falling edges of CK. CS and CKE inputs are sampled at the rising edge of CK. AC timings are referenced to clock.
CKE	Input	Clock Enable : CKE HIGH activates and CKE LOW deactivates the internal clock signals, input buffers, and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is considered part of the command code. CKE is sampled at the rising edge of CK.
CS(CS_n)	Input	Chip Select : \overline{CS} is considered part of the command code and is sampled at the rising edge of CK.
CA0~CA9	Input	Command/address inputs: Provide the command and address inputs according to the command truth table.
DM0~DM3	Input	Input Data Mask : DM is an input mask signal for write data. Although DM balls are input-only, the DM loading is designed to match that of DQ and DQS balls. DM[3:0] is DM for each of the four data bytes, respectively.
DQ0~DQ31	Input/output	Data input/output: Bidirectional data bus.
DQS[3:0], (DQS_t[3:0]), DQS[3:0] (DQS_c[3:0])	Input/output	Data strobe: The data strobe is bidirectional (used for read and write data) and complementary $(DQS and DQS)$. It is edge-aligned output with read data and centered input with write data. $DQS[3:0]/DQS[3:0]$ is DQS for each of the four data bytes, respectively
NC		No Connect: No internal electrical connection is present.
ODT	Input	On-Die Termination: This signal enables and disables termination on the DRAM DQ bus according to the specified mode register setting.
ZQ	Input	External impedance (240 ohm): This signal is used to calibrate the device out-put impedance.
VDD1	Supply	Core power: Supply 1.
VDD2	Supply	Core power: Supply 2.
VDDQ	Supply	DQ power supply: Isolated on the die for improved noise immunity.
VDDCA	Supply	Command/address power supply: Command/address power supply.
VREF(DQ), VREF(CA)	Supply	Reference voltage: VREF(CA) is reference for command/address input buffers, VREF(DQ) is reference for DQ input buffers.
VSS	Supply	Common ground
VSSQ	Supply	DQ Common ground
VSSCA	Supply	CA Common ground

Functional Block Diagram


512Mb X 32 178 Ball LPDDR3

Notes:

1. Total current consumption is dependent to user operating conditions. AC and DC Characteristics shown in this specification are based on a single die.

Simplified State Diagram

Basic Functionality

LPDDR3-SDRAM is a high-speed synchronous DRAM device internally configured as an 8-bank memory.

LPDDR3 devices use a double data rate architecture on the Command/Address (CA) bus to reduce the number of input pins in the system. The 10-bit CA bus contains command, address, and bank information. Each command uses one clock cycle, during which command information is transferred on both the positive and negative edge of the clock.

These devices also use a double data rate architecture on the DQ pins to achieve high speed operation. The double data rate architecture is essentially an 8n pre-fetch architecture with an interface designed to transfer two data bits per DQ every clock cycle at the I/O pins. A single read or write access for the LPDDR3 SDRAM effectively consists of a single 8n-bit wide, one clock cycle data transfer at the internal DRAM core and eight corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins.

Read and write accesses to the LPDDR3 SDRAMs are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Activate command, which is then followed by a Read or Write command. The address and BA bits registered coincident with the Activate command are used to select the row and the bank to be accessed. The address bits registered coincident with the Read or Write command are used to select the bank and the starting column location for the burst access.

Prior to normal operation, the LPDDR3 SDRAM must be initialized. The following section provides detailed information covering device initialization, register definition, command description and device operation.

Power-Up, Initialization, and Power-Off

LPDDR3 devices must be powered up and initialized in a predefined manner. Power-up and initialization by means other than those specified will result in undefined operation.

Voltage Ramp and Device Initialization

The following sequence must be used to power up the device. Unless specified otherwise, this procedure is mandatory and applies to devices.

Voltage Ramp:

While applying power (after Ta), CKE must be held LOW (=<0.2 x VDDCA), and all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW. Following the completion of the voltage ramp (Tb), CKE must be maintained LOW. DQ, DM, DQS and DQS voltage levels must be between VSSQ and VDDQ during voltage ramp to avoid latch up. CK, CK, CS, and CA input levels must be between VSSCA and VDDCA during voltage ramp to avoid latch-up.

The following conditions apply:

Ta is the point where any power supply first reaches 300 mV.

After Ta is reached, VDD1 must be greater than VDD2 - 200 mV.

After Ta is reached, VDD1 and VDD2 must be greater than VDDCA - 200 mV.

After Ta is reached, VDD1 and VDD2 must be greater than VDDQ - 200 mV.

After Ta is reached, VREF must always be less than all other supply voltages. Note:

Ta is the point when any power supply first reaches 300mV.

Noted conditions apply between Ta and power-off (controlled or uncontrolled).

Tb is the point at which all supply and reference voltages are within their defined operating ranges.

Power ramp duration tINIT0 (Tb - Ta) must be no greater than 20 ms.

The voltage difference between any of VSS, VSSQ, and VSSCA pins may not exceed 100 mV.

Beginning at Tb, CKE must remain LOW for at least Tinit1 = 100 ns, after which CKE can be asserted HIGH. The clock must be stable at least Tinit2 = $5 \times \text{Tck}$ prior to the first CKE LOW-to-HIGH transition (Tc). CKE, CS, and CA inputs must observe setup and hold requirements (Tis, Tih) with respect to the first rising clock edge (as well as to subsequent falling and rising edges).

If any MRRs are issued, the clock period must be within the range defined for tCKb. MRWs can be issued at normal clock frequencies as long as all AC timings are met. Some AC parameters (for example, Tdqsck) could have relaxed timings (such as tDQSCKb) before the system is appropriately configured. While keeping CKE HIGH, NOP commands must be issued for at least Tinit3 (Td). The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal shall be statically held at either LOW or HIGH. The ODT input signal remains static until the power up initialization sequence is finished, including the expiration of tZQINIT.

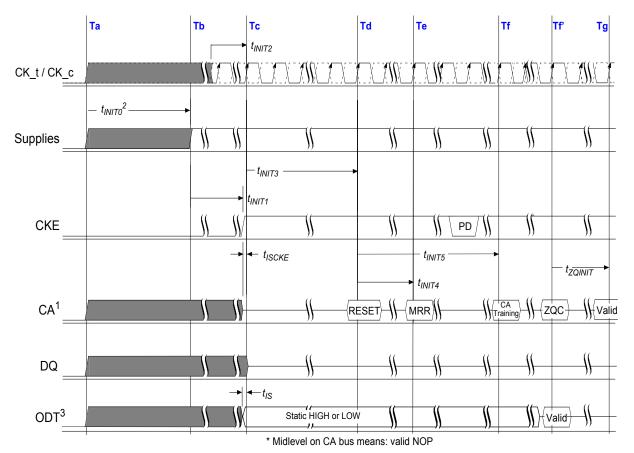
RESET Command:

After Tinit3 is satisfied, the MRW RESET command must be issued (Td). An optional PRECHARGE ALL command can be issued prior to the MRW RESET command. Wait at least Tinit4 while keeping CKE asserted and issuing NOP commands.

MRRs and Device Auto Initialization (DAI) Polling:

After Tinit4 is satisfied (Te), only MRR commands and power-down entry/exit commands are supported. After Te, CKE can go LOW in alignment with power-down entry and exit specifications. Use the MRR command to poll the DAI bit and report when device auto initialization is complete; otherwise, the controller must wait a minimum of Tinit5, or until the DAI bit is set before proceeding. As the memory output buffers are not properly configured by Te, some AC parameters must have relaxed timings before the system is appropriately configured. After the DAI bit (MR0, DAI) is set to zero by the memory device (DAI complete), the device is in the idle state (Tf). DAI status can be determined by issuing the MRR command to MR0. The device sets the DAI bit no later than Tinit5 after the RESET command. The controller must wait at least Tinit5 or until the DAI bit is set before proceeding.

ZQ Calibration:


After Tinit5 (Tf), the MRW initialization calibration (ZQ_CAL) command can be issued to the memory (MR10). This command is used to calibrate output impedance over process, voltage, and temperature. In systems where more than one LPDDR3 device exists on the same bus, the controller must not overlap MRW ZQ_CAL commands. The device is ready for normal operation after Tzqinit.

Normal Operation:

After Tzqinit (Tg), MRW commands must be used to properly configure the memory (for example the output buffer drive strength, latencies, etc.). Specifically, MR1, MR2, and MR3 must be set to configure the memory for the target frequency and memory configuration. After the initialization sequence is complete, the device is ready for any valid command. After Tg, the clock frequency can be changed using the procedure described in the LPDDR3 specification.

Power Ramp and Initialization Sequence

Notes:

1. High-Z on the CA bus indicates NOP.

2. For tINIT values, see below Table.

3. After RESET command (time Te), RTT is disabled until ODT function is enabled by MRW to MR11 following Tg.

4. CA Training is optional.

	Va	lue		
Parameter	Min	Min Max		Comment
tINIT0	-	20	ms	Maximum voltage-ramp time
tINIT1	100	-	ns	Minimum CKE LOW time after completion of voltage ramp
tINIT2	5	-	tCK	Minimum stable clock before first CKE HIGH
tINIT3	200	-	us	Minimum idle time after first CKE assertion
tINIT4	1	-	us	Minimum idle time after RESET command
tINIT5 ¹	-	10	us	Maximum duration of device auto initialization
tZQINIT	1	-	us	ZQ initial calibration
tCKb	18	100	ns	Clock cycle time during boot

NOTE 1 If DAI bit is not read via MRR, SDRAM will be in idle state after tINIT5(max) has expired.

Initialization after RESET (without voltage ramp)

If the RESET command is issued before or after the power-up initialization sequence, the re-initialization procedure must begin at Td.

Power-Off Sequence

Use the following sequence to power off the device. Unless specified otherwise, this procedure is mandatory and applies to devices. While powering off, CKE must be held LOW (=< 0.2 x VDDCA); all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW.

DQ, DM, DQS, and \overline{DQS} voltage levels must be between VSSQ and VDDQ during the power-off sequence to avoid latch-up. CK, \overline{CK} , \overline{CS} , and CA input levels must be between VSSCA and VDDCA during the power-off sequence to avoid latch-up.

Tx is the point where any power supply decreases under its minimum value specified in the DC operating condition table.

Tz is the point where all power supplies are below 300 mV. After Tz, the device is powered off.

The following conditions apply:

Between Tx and Tz, VDD1 must be greater than VDD2 - 200 mV.

Between Tx and Tz, VDD1 and VDD2 must be greater than VDDCA - 200 mV.

Between Tx and Tz, VDD1 and VDD2 must be greater than VDDQ - 200 mV.

Between Tx and Tz, VREF must always be less than all other supply voltages.

The voltage difference between any of VSS, VSSQ, and VSSCA pins may not exceed 100 mV.

Uncontrolled Power-Off Sequence

When an uncontrolled power-off occurs, the following conditions must be met:

At Tx, when the power supply drops below the minimum values specified, all power supplies must be turned off and all power-supply current capacity must be at zero, except for any static charge remaining in the system. After Tz (the point at which all power supplies first reach 300Mv), the device must power off. The time between Tx and Tz must not exceed 2s. During this period, the relative voltage between power supplies is uncontrolled. VDD1 and VDD2 must decrease with a slope lower than 0.5 V/us between Tx and Tz. An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the device.

Symbol	Va	lue	Unit	Comment
	min	max		
tPOFF	-	2	S	Maximum Power-off ramp time

Mode Register Definition

LPDDR3 devices contain a set of mode registers used for programming device operating parameters, reading device information and status, and for initiating special operations such as DQ calibration, ZQ calibration, and device reset.

Mode Register Assignment and Definition

Table below shows the mode registers for LPDDR3 SDRAM. Each register is denoted as "R", if it can be read but not written, "W" if it can be written but not read, and "R/W" if it can be read and written. Mode Register Read Command shall be used to read a register. Mode Register Write Command shall be used to write a register.

Mode Register Assignment

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
00	00 _H	Device Info.	R	RL3	WL-B	(RFU)	RZ	ZQI	QI (RFU)		DAI	
01	01 _H	Device Feature1	W	n۱	NR (for A	P)	(RI	=U)		BL		
02	02 _H	Device Feature2	W	WRLev	WL Sel	(RFU)	nWRE		RL & WL			
03	03 _H	I/O Config-1	W		(RI	=U)			D	S		
04	04 _H	Refresh Rate	R	TUF		(RI	FU)		R	efresh Ra	te	
05	05 _H	Basic Config-1	R			LPI	DDR3 Ma	nufacture	r ID			
06	06 _H	Basic Config-2	R				Revisi	on ID1				
07	07 _H	Basic Config-3	R				Revisi	on ID2				
08	08 _H	Basic Config-4	R	I/O v	width		Der	nsity		Ту	ре	
09	09 _H	Test Mode	W	Vendor-Specific Test Mode								
10	0A _H	IO Calibration	W	Calibration Code								
11	0B _H	ODT	W			(RFU)			PD ctl	DQ	ODT	
12~15	0C _H ~0F _H	(Reserved)					(RI	=U)				
16	10 _H	PASR_BANK	W				Bank	Mask				
17	11 _H	PASR_Seg	W				Segme	nt Mask				
18~31	12 _H ~1F _H	(Reserved)					(RI	=U)				
32	20 _H	DQ calibration pattern A	R		S	ee Data (Calibratio	n Pattern	Descriptio	n		
33~39	21 _H ~27 _H	(Do Not Use)										
40	28 _H	DQ calibration pattern B	R		S	ee Data (Calibratio	n Pattern	Descriptio	n		
41	29 _H	CA Training 1	W			See	MRW - C	A Traing r	node			
42	2A _H	CA Training 2	W			See	MRW - C	A Traing r	node			
43~47	2B _H ~2F _H	(Do Not Use)										
48	30 _H	CA Training 3	W			See	MRW - C	A Traing r	node			
49~62	31 _H ~3E _H	(Reserved)					(RI	=U)				
63	3F _H	Reset	W				2	x				

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
64~225	40 _H ~FF _H	(Reserved)					(RI	=U)			

Notes:

1. RFU bits shall be set to "0" during Mode Register writes.

2. RFU bits shall be read as "0" during Mode Register reads.

3. All Mode Registers from that are specified as RFU or write-only shall return undefined data when read and DQS shall be toggled.

4. All Mode Registers that are specified as RFU shall not be written.

5. See vendor device datasheets for details on vendor-specific mode registers.

6. Writes to read-only registers shall have no impact on the functionality of the device.

MR0_Devcie Information (MA<7:0> = 00H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
00	00 _H	Device Info.	R	RL3	WL-B	(RFU)	RZ	QI	(RF	=U)	DAI

OP0	DI (Device Information)	Read-only	0B: DAI complete 1B: DAI still in progress
OP<3:4>	RZQI (Built in Self Test for RZQ Information)	Read-only	00B: RZQ self test not supported 01B: ZQ-pin may connect to VDDCA or float 10B: ZQ-pin may short to GND 11B: ZQ-pin self test completed, no error condition detected (ZQ-pin may not connect to VDDCA or float nor short to GND)
OP6	WL (Set B) Support	Read-only	0B: DRAM does not support WL (Set B) 1B: DRAM supports WL (SetB)
OP7	RL3 Option Support	Read-only	0B: DRAM does not support RL=3, nWR=3, WL=1 1B: DRAM supports RL=3, nWR=3, WL=1 for frequencies <166

Note:

1. RZQI, if supported, will be set upon completion of the MRW ZQ Initialization Calibration command.

2. If ZQ is connected to VDDCA to set default calibration, OP[4:3] shall be set to 01. If ZQ is not connected to VDDCA, either OP[4:3]=01 or OP[4:3]=10 might indicate a ZQ-pin assembly error. It is recommended that the assembly error is corrected.

3. In the case of possible assembly error (either OP[4:3]=01 or OP[4:3]=10 per Note 4), the LPDDR3 device will default to factory trim settings for RON, and will ignore ZQ calibration commands. In either case, the system may not function as intended.

4. In the case of the ZQ self-test returning a value of 11b, this result indicates that the device has detected a resistor connection to the ZQ pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor tolerance meets the specified limits (i.e. $240-\Omega + /-1\%$).

MR4_Device Temperature (MA<7:0> = 04H)

Į	MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
Ī	04	04 _H		R	TUF	(RFU)				Re	efresh Ra	te

OP<2:0>	Refresh Rate	Read-only	000B: SDRAM Low temperature operating limit exceeded 001B: 4x tREFI, 4x tREFlpb, 4x tREFW 010B: 2x tREFI, 2x tREFlpb, 2x tREFW 011B: 1x tREFI, 1x tREFlpb, 1x tREFW (<=85'C) 100B: 0.5x tREFI, 0.5x tREFlpb, 0.5x tREFW, do not de-rate SDRAM AC timing 101B: 0.25x tREFI, 0.25x tREFlpb, 0.25x tREFW, do not de- rate SDRAM AC timing 110B: 0.25x tREFI, 0.25x tREFlpb, 0.25x tREFW, de-rate SDRAM AC timing 110B: 0.25x tREFI, 0.25x tREFlpb, 0.25x tREFW, de-rate SDRAM AC timing 111B: SDRAM High temperature operating limit exceeded
OP7	TUF (Temperature Update Flag)	Read-only	0B: OP<2:0> value has not changed since last read of MR4. 1B: OP<2:0> value has changed since last read of MR4.

Notes:

1. A Mode Register Read from MR4 will reset OP7 to "0".

2. OP7 is reset to "0" at power-up.

3. If OP2 equals "1", the device temperature is greater than 85'C.

4. OP7 is set to "1", if OP2~OP0 has changed at any time since the last read of MR4.

5. LPDDR3 might not operate properly when OP<2:0> = 000B or 111B.

6. For specified operating temperature range and maximum operating temperature.

7. LPDDR3 devices must be derated by adding 1.875ns to the following core timing parameters: Trcd, Trc, Tras, Trp, and Trrd. tDQSCK shall be de-rated according to the tDQSCK de-rating in the AC timing table. Prevailing clock frequency specifications and related setup and hold timings remain unchanged.

8. The recommended frequency for reading MR4 is provided in the Temperature Sensor section.

MR5_Basic Configuration 1 (MA<7:0> = 05H)

	MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
ĺ	05	05 _H	Basic Config-1	R	LPDDR3 Manufacturer ID							

OP<7:0> N	Manufacturer ID	Read-only	See JESD-TBD LPDDR3 Manufacturer ID encodings
-----------	-----------------	-----------	---

MR6_Basic Configuration 2 (MA<7:0> = 06H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
06	06 _H	Basic Config-2	R	Revision ID1							

OP<7:0> Revision ID1	Read-only	0000000B: A-version
----------------------	-----------	---------------------

MR7_Basic Configuration 3 (MA<7:0> = 07H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
07	07 _H	Basic Config-3	R	Revision ID2							

OP<7:0>	Revision ID1	Read-only	0000000B: A-version
---------	--------------	-----------	---------------------

MR8_Basic Configuration 4 (MA<7:0> = 08H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
08	08 _H	Basic Config-4	R	I/O v	vidth	Density			Ту	pe	

OP<1:0>	Туре	Read-only	11B: S8 SDRAM All others: reserved
OP<5:2>	Density	Read-only	0110B: 4Gb 1110B: 6Gb 0111B: 8Gb 1000B: 16Gb 1001B: 32Gb All others: reserved
OP<7:6>	I/O width	Read-only	00B: x32 01B: x16 All others: reserved

MR9_Test Mode (MA<7:0> = 09H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
09	09 _H	Test Mode	W			Ven	dor-Speci	ific Test N	lode		

OP<7:0> Vendor-Specific Test Mode	Write-only	
-----------------------------------	------------	--

MR10_Calibration (MA<7:0> = 0AH)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
10	0A _H	IO Calibration	W	Calibration Code							

OP<7:0>	Calibration Code	Write-only	0xFF: Calibration command after initialization 0xAB: Long calibration 0x56: Short calibration 0xC3: ZQ Reset All others: Reserved
---------	------------------	------------	---

Notes:

1. Host processor shall not write MR10 with "Reserved" values.

2. LPDDR3 devices shall ignore calibration command, when a "Reserved" values is written into MR10.

3. See AC timing table for the calibration latency.

4. If ZQ is connected to VSSCA through RZQ, either the ZQ calibration function (see "MRW ZQ Calibration Command") or default calibration (through the ZQ RESET command) is supported. If ZQ is connected to VDDCA, the device operates with default calibration, and ZQ calibration commands are ignored. In both cases, the ZQ connection must not change after power is supplied to the device.

5. Devices that do not support calibration ignore the ZQ calibration command.

6. Optionally, the MRW ZQ Initialization Calibration command will update MR0 to indicate RZQ pin connection.

MR11_ODT (MA<7:0> = 0BH)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
11	0B _H ~0F _H	ODT	W		(RFU)				PD ctl	DQ	ODT

OP<1:0>	DQ ODT	Write-only	00B: Disable (Default) 01B: RZQ/4 (see Note 1) 10B: RZQ/2 11B: RZQ/1
OP2	PD Control	Write-only	0B: ODT disabled by DRAM during power down (default) 1B: ODT enabled by DRAM during power down

Notes:

1. RZQ/4 support is optional for LPDDR3-1333 devices. Consult manufacturer specifications for RZQ/4 support for LPDDR3-1333.

MR12:15_(Reserved) (MA<7:0> = 0CH- 0FH)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
12~15	0C _H ~0F _H	(reserved)	(RFU)								

OP<7:0> RFU

MR16_PASR_Bank Mask (MA<7:0> = 010H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
16	10 _H	PASR_BANK	W	Bank Mask							

OP<7:0>	Bank Mask Code	Write-only	0B: refresh enable to the bank (=unmasked, default)
			1B: refresh blocked (=masked)

OP	Bank Mask	8 Bank
0	XXXXXXX1	Bank 0
1	XXXXXX1X	Bank 1
2	XXXXX1XX	Bank 2
3	XXXX1XXX	Bank 3
4	XXX1XXXX	Bank 4
5	XX1XXXXX	Bank 5
6	X1XXXXXX	Bank 6
7	1XXXXXXX	Bank 7

MR17_PASR_Segment Mask (MA<7:0> = 011H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
17	11 _H	PASR_Seg	W	Segment Mask							

OP<7:0> Segment Mask Code			Writ	e-only	0B: refresh enable to the segment (=unmasked, defaul 1B: refresh blocked (=masked)					
			4Gb	6Gb ²	8Gb	12Gb ²	16Gb	32Gb		
Segment	OP	Segment Mask	R13:11	R14:12	R14:12	R14:12	R14:12	R14:12		
0	0	XXXXXXX1				000B				
1	1	XXXXXX1X		001B						
2	2	XXXXX1XX	010B							
3	3	XXXX1XXX				011B				
4	4	XXX1XXXX	100B							
5	5	XX1XXXXX	101B							
6	6	X1XXXXXX	110B							
7	7	1XXXXXXX				111B				

Notes:

- 1. This table indicates the range of row addresses in each masked segment. X is don't care for a particular segment.
- 2 No memory present at addresses with R13=R14=HIGH. Segment masks 6 and 7 are ignored.

MR18:31_(Reserved) (MA<7:0> = 012H- 01FH)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
18~31	12 _H ~1F _H	(Reserved)	(RFU)								

OP<7:0> RFU				
-------------	--	--	--	--

MR32_DQ Calibration Pattern A (MA<7:0> = 020H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
32	20 _H	DQ calibration pattern A	R		Se	e "Data C	Calibratior	Pattern	Descriptio	on"	

OP<7:0>	Reads to MR32 return DQ calibration	Read-only
	pattern A	

Notes:

1. Reads to MR32 return DQ Calibration Pattern "A". See "DQ Calibration"

MR40_DQ Calibration Pattern B(MA<7:0> = 028H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
40	28 _H	DQ calibration pattern B	R		Se	e "Data (Calibratior	n Pattern	Descriptio	on"	

|--|

Notes:

1. Reads to MR40 return DQ Calibration Pattern "B". See "DQ Calibration"

MR41_CA Training 1(MA<7:0> = 029H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
41	29 _H	CA Training 1	W			See N	1RW - CA	Training	Mode		

OP<7:0> Writes to MR41 enables CA Training
--

Notes:

1. Writes to MR41 enables CA Training. See Mode Register Write - CA Training Mode

MR42_CA Training 1(MA<7:0> = 02AH)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
42	2A _H	CA Training 2	W			See M	1RW - CA	Training	Mode		

|--|

Notes:

1. Writes to MR42 enables CA Training. See Mode Register Write - CA Training Mode

MR48_CA Training 3(MA<7:0> = 030H)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
48	30 _H	CA Training 3	W			See N	/IRW - CA	Training	Mode		

OP<7:0> Writes to MR48 enables CA Training	Write-only	
--	------------	--

Notes:

1. Writes to MR48 enables CA Training. See Mode Register Write - CA Training Mode

MR63_Reset (MA<7:0> = 03FH): MRW only

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
63	3F _H	Reset	W				X or	0xFC			

OP<7:0> Reset Write-only X or 0xFC

Notes: For additional information on MRW RESET, see "Mode Register Write Command" on Timing Spec.

MR64:255_(Reserved) (MA<7:0> = 40H- FFH)

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
64~255	40 _H ~FF _H	(reserved)					(RI	=U)			

OP<7:0>	RFU		
---------	-----	--	--

Do Not Use

MR#	MA<0:7>	Function	Access	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
33~39	21 _H ~27 _H	(Do Not Use)									
41~47	2B _H ~2F _H	(Do Not Use)									

LPDDR3 SDRAM Truth Table

Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the LPDDR3 device must be powered down and then restarted through the specified initialization sequence before normal operation can continue.

Command Truth Table

	SDR	Command	Pins	DDR CA pins (10)										
	CH	(E												
SDRAM Command	CK_t(n-1) CK_t(n)		CS_N	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CK_t EDGE
MRW	Н	Н	L	L	L	L	L	MA0	MA1	MA2	MA3	MA4	MA5	rising
			х	MA6	MA7	OP0	OP1	02	OP3	OP4	OP5	OP6	OP7	falling
MRR	R H H	L	L	L	L	н	MA0	MA1	MA2	MA3	MA4	MA5	rising	
			х	MA6	MA7			•		X				falling
Refresh	Н	Н	L	L	L	н	L			2	x			rising
(per bank)			х			-		2	x					falling
Refresh	Н	Н	L	L	L	н	Н			2	x			rising
(all bank)			х					2	x					falling
Enter	ter H L		L	L	L	н				Х				rising
Self Refresh	х		X X						falling					
Activate (bank)	Н	Н	L	L	н	R8	R9	R10	R11	R12	BA0	BA1	BA2	rising
			х	R0	R1	R2	R3	R4	R5	R6	R7	R13	R14	falling
Write	Н	Н	L	Н	L	L	RFU	RFU	C1	C2	BA0	BA1	BA2	rising
(bank)			х	AP ³	C3	C4	C5	C6	C7	C8	C9	C10	C11	falling
Read	Н	н н	L	Н	L	н	RFU	RFU	C1	C2	BA0	BA1	BA2	rising
(bank)			х	AP ³	C3	C4	C5	C6	C7	C8	C9	C10	C11	falling
Precharge ¹¹	Н	Н	L	н	Н	L	Н	AB	х	х	BA0	BA1	BA2	rising
(per bank, all bank)			Х	х	х	х	Х	х	Х	Х	Х	х	Х	falling
Enter Deep	Н	L	L	н	н	L				Х				rising
Power Down	Х		х			•		2	x					falling
NOP	Н	Н	L	н	Н	Н				Х				rising
			х					2	x					falling
Maintain	L	L	L	н	Н	н				Х				rising
PD, SREF, DPD (NOP) see note 4			Х	X									falling	
NOP	Н	Н	Н)	x					rising
			Х)	x					falling

	SDR Command Pins			DDR CA pins (10)										
SDRAM	Cł	٢E												
Command	CK_t(n-1)	CK_t(n)	CS_N	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CK_t EDGE
Maintain	L	L	х)	K					rising
PD, SREF, DPD see note 4			Х	Х									falling	
Enter	Н	L	Н		X								rising	
Power Down	Х		х	Х							falling			
Exit	L	Н	Н		Х							rising		
PD, SREF, DPD	Х		Х	X							falling			

Notes:

1. All LPDDR3 commands are defined by states of CS_n(CS), CA0, CA1, CA2, CA3, and CKE at the rising edge of the clock.

2. Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon.

3. AP "high" during a READ or WRITE command indicates that an auto-precharge will occur to the bank associated with the READ or WRITE command.

4. "x" means "H or L (but a defined logic level)", except when the LPDDR3 SDRAM is in PD, SREF, or DPD, in which case $CS_n(CS)$, $CK(CK_t) / CK(CK_c)$, and CA can be floated.

5. Self refresh exit and Deep Power Down exit are asynchronous.

6. VREF must be between 0 and VDDQ during Self Refresh and Deep Down operation.

7. CAxr refers to command/address bit "x" on the rising edge of clock.

8. CAxf refers to command/address bit "x" on the rising edge of clock.

9. $CS_n(\overline{CS})$ and CKE are sampled at the rising edge of clock.

10. The least-significant column address C0 is not transmitted on the CA bus, and is implied to be zero.

11. AB "high" during Precharge command indicates that all bank Precharge will occur. In this case, Bank Address is donot-care.

12. When $CS_n(\overline{CS})$ is HIGH, LPDDR3 CA bus can be floated.

CKE Truth Table

Device Current State ^{*3}	CKE _{n-1} *1	CKE _n *1	CS_n ^{*2}	Command n ^{*4}	Operation n ^{*4}	Device Next State	Notes
Active	L	L	x	х	Maintain Active Power Down	Active Power Down	
Power Down	L	н	н	NOP	Exit Active Power Down	Active	6, 9
	L	L	x	х	Maintain Idle Power Down	Idle Power Down	
Idle Power Down	L	н	н	NOP	Exit Idle Power Down	Idle	6, 9
Resetting	L	L	x	х	Maintain Resetting Power Down	Resetting Power Down	
Power Down	L	н	н	NOP	Exit Resetting Power Down	Idle or Resetting	6, 9, 12
Deep Power Down	L	L	x	х	Maintain Deep Power Down	Deep Power Down	
	L	н	н	NOP	Exit Deep Power Down	Power On	8
Self Refresh	L	L	х	х	Maintain Self Refresh	Self Refresh	
Sell Reliesh	L	н	н	NOP	Exit Self Refresh	Idle	7, 10
Bank(s) Active	н	L	н	NOP	Enter Active Power Down	Active Power Down	
	н	L	н	NOP	Enter Idle Power Down	Idle Power Down	
All Banks Idle	н	L	L	Enter Self-Refresh	Enter Self Refresh	Self Refresh	
	н	L	L	Deep Power Down	Enter Deep Power Down	Deep Power Down	
Resetting	н	L	н	NOP	Enter Resetting Power Down	Resetting Power Down	
	н	н		Refer to the Com	mand Truth Table		

Notes:

- 1. "CKEn" is the logic state of CKE at clock rising edge n; "CKEn-1" was the state of CKE at the previous clock edge.
- 2. "CS_n" is the logic state of CS_n at the clock rising edge n.
- 3. "Current state" is the state of the LPDDR3 device immediately prior to clock edge n.
- 4. "Command n" is the command registered at clock edge N, and "Operation n" is a result of "Command n".
- 5. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
- 6. Power Down exit time (tXP) should elapse before a command other than NOP is issued.
- 7. Self-Refresh exit time (tXSR) should elapse before a command other than NOP is issued.
- 8. The Deep Power-Down exit procedure must be followed as discussed in the Deep Power-Down section of the Functional Description.
- 9. The clock must toggle at least once during the tXP period.
- 10. The clock must toggle at least twice during the tXSR time.
- 11. "X" means "Don't care".
- 12. Upon exiting Resetting Power Down, the device will return to the Idle state if tINIT5 has expired.

13. In the case of ODT disabled, all DQ output shall be Hi-Z. In the case of ODT enabled, all DQ shall be terminated to VDDQ.

Current State	Command	Operation	Next State	NOTES
Any	NOP	Continue previous operation	Current State	
	ACTIVATE	Select and activate row	Active	
	Refresh (Per Bank)	Begin to refresh	Refreshing (Per Bank)	6
	Refresh (All Bank)	Begin to refresh	Refreshing(All Bank)	7
Idle	MRW	Write value to Mode Register	MR Writing	7
Ture	MRR	Read value from Mode Register	Idle MR Reading	
	Reset	Begin Device Auto-Initialization	Resetting	8
	Precharge	Deactivate row in bank or banks	Precharging	9, 14
	Read	Select column, and start read burst	Reading	11
Row	Write	Select column, and start write burst	Writing	11
Active	MRR	Read value from Mode Register	Active MR Reading	
	Precharge	Deactivate row in bank or banks	Precharging	9
Deeding	Read	Select column, and start new read burst	Reading	10, 11
Reading	Write	Select column, and start write burst	Writing	10, 11, 12
Waitin	Write	Select column, and start new write burst	Writing	10, 11
Writing	Read	Select column, and start read burst	Reading	10, 11, 13
Power On	Reset	Begin Device Auto-Initialization	Resetting	8
Resetting	MRR	Read value from Mode Register	Resetting MR Reading	

Current State Bank n - Command to Bank n

Notes:

1. The table applies when both CKEn-1 and CKEn are HIGH, and after tXSR or tXP has been met if the previous state was Power Down.

2. All states and sequences not shown are illegal or reserved.

3. Current State Definitions:

Idle: The bank or banks have been pre-charged, and tRP has been met.

Active: A row in the bank has been activated, and tRCD has been met. No data bursts / accesses and no register accesses are in progress.

Reading: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Writing: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.

4. The following states must not be interrupted by a command issued to the same bank. NOP commands or allowable commands to the other bank should be issued on any clock edge occurring during these states.

Precharging: starts with the registration of a Precharge command and ends when tRP is met. Once tRP is met, the bank will be in the idle state.

Row Activating: starts with registration of an Activate command and ends when tRCD is met. Once tRCD is met, the bank will be in the 'Active' state.

Read with AP Enabled: starts with the registration of the Read command with Auto Precharge enabled and ends when tRP has been met. Once tRP has been met, the bank will be in the idle state.

Write with AP Enabled: starts with registration of a Write command with Auto Precharge enabled and ends when tRP

has been met. Once tRP is met, the bank will be in the idle state.

5. The following states must not be interrupted by any executable command; NOP commands must be applied to each positive clock edge during these states.

Refreshing (Per Bank): starts with registration of an Refresh (Per Bank) command and ends when tRFCpb is met. Once tRFCpb is met, the bank will be in an 'idle' state.

Refreshing (All Bank): starts with registration of an Refresh (All Bank) command and ends when tRFCab is met. Once tRFCab is met, the device will be in an 'all banks idle' state.

Idle MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Idle state.

Resetting MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Resetting state.

Active MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Active state.

MR Writing: starts with the registration of a MRW command and ends when tMRW has been met. Once tMRW has been met, the bank will be in the Idle state.

Precharging All: starts with the registration of a Precharge-All command and ends when tRP is met. Once tRP is met, the bank will be in the idle state.

6. Bank-specific; requires that the bank is idle and no bursts are in progress.

7. Not bank-specific; requires that all banks are idle and no bursts are in progress.

8. Not bank-specific reset command is achieved through Mode Register Write command.

9. This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for pre-charging.

10. A command other than NOP should not be issued to the same bank while a Read or Write burst with Auto Precharge is enabled.

11. The new Read or Write command could be Auto Precharge enabled or Auto Precharge disabled.

12. A Write command may be applied after the completion of the Read burst; otherwise, a BST must be used to end the Read prior to asserting a Write command.

13. A Read command may be applied after the completion of the Write burst; otherwise, a BST must be used to end the Write prior to asserting a Read command.

14. If a Precharge command is issued to a bank in the Idle state, tRP shall still apply.

Current State Bank n - Command to Bank m

Current State of Bank n	Command for Bank m	Operation	Next State for Bank m	NOTES
Any	NOP	Continue previous operation	Current State of Bank m	
Idle	Any	Any command allowed to Bank <i>m</i>	-	18
	Activate	Select and activate row in Bank <i>m</i>	Active	6
	Read	Select column, and start read burst from Bank <i>m</i>	Reading	7
Row Activat- ing, Active, or	Write	Select column, and start write burst to Bank <i>m</i>	Writing	7
Precharging	Precharge	Deactivate row in bank or banks	Precharging	8
	MRR	Read value from Mode Register	Idle MR Reading or Active MR Reading	9, 10, 12
	Read	Select column, and start read burst from Bank <i>m</i>	Reading	7
Reading	Write	Select column, and start write burst to Bank <i>m</i>	Writing	7, 13
(Autoprecharge disabled)	Activate	Select and activate row in Bank <i>m</i>	Active	
	Precharge	Deactivate row in bank or banks	Precharging	8
	Read	Select column, and start read burst from Bank <i>m</i>	Reading	7, 15
Writing	Write	Select column, and start write burst to Bank <i>m</i>	Writing	7
(Autoprecharge disabled)	Activate	Select and activate row in Bank <i>m</i>	Active	
	Precharge	Deactivate row in bank or banks	Precharging	8
	Read	Select column, and start read burst from Bank <i>m</i>	Reading	7, 14
Reading with	Write	Select column, and start write burst to Bank <i>m</i>	Writing	7, 13, 14
Autoprecharge	Activate	Select and activate row in Bank <i>m</i>	Active	
	Precharge	Deactivate row in bank or banks	Precharging	8
	Read	Select column, and start read burst from Bank <i>m</i>	Reading	7, 14, 15
Writing with	Write	Select column, and start write burst to Bank <i>m</i>	Writing	7, 14
Autoprecharge	Activate	Select and activate row in Bank <i>m</i>	Active	
	Precharge	Deactivate row in bank or banks	Precharging	8
Power On	Reset	Begin Device Auto-Initialization	Resetting	11, 16
Resetting	MRR	Read value from Mode Register	Resetting MR Reading	

Notes:

1. The table applies when both CKEn-1 and CKEn are HIGH, and after tXSR or tXP has been met if the previous state was Self Refresh or Power Down.

2. All states and sequences not shown are illegal or reserved.

3. Current State Definitions:

Idle: the bank has been precharged, and tRP has been met.

Active: a row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress.

Reading: a Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Writing: a Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. 4. Refresh, Self-Refresh, and Mode Register Write commands may only be issued when all bank are idle.

5. The following states must not be interrupted by any executable command; NOP commands must be applied during each clock cycle while in these states:

Idle MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Idle state.

Resetting MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Resetting state.

Active MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Active state.

MR Writing: starts with the registration of a MRW command and ends when tMRW has been met. Once tMRW has been met, the bank will be in the Idle state.

6. tRRD must be met between Activate command to Bank n and a subsequent Activate command to Bank m.

7. Reads or Writes listed in the Command column include Reads and Writes with Auto Precharge enabled and Reads and Writes with Auto Precharge disabled.

8. This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for pre-charging.

9. MRR is allowed during the Row Activating state (Row Activating starts with registration of an Activate command and ends when tRCD is met.)

10. MRR is allowed during the Precharging state. (Precharging starts with registration of a Precharge command and ends when tRP is met.

11. Not bank-specific; requires that all banks are idle and no bursts are in progress.

12. The next state for Bank m depends on the current state of Bank m (Idle, Row Activating, Precharging, or Active). The reader shall note that the state may be in transition when a MRR is issued. Therefore, if Bank m is in the Row Activating state and Precharging, the next state may be Active and Precharge dependent upon tRCD and tRP respectively.

13. A Write command may be applied after the completion of the Read burst, otherwise a BST must be issued to end the Read prior to asserting a Write command.

14. Read with auto precharge enabled or a Write with auto precharge enabled may be followed by any valid command to other banks provided that the timing restriction.

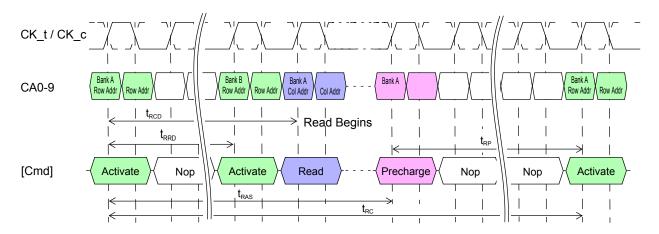
15. A Read command may be applied after the completion of the Write burst; otherwise, a BST must be issued to end the Write prior to asserting a Read command.

16. Reset command is achieved through Mode Register Write command.

Data Mask Truth Table

Name (Functional)	DM	DQs	Note
Write enable	L	Valid	1
Write inhibit	Н	х	1

Notes:


1. Used to mask write data, provided coincident with the corresponding data.

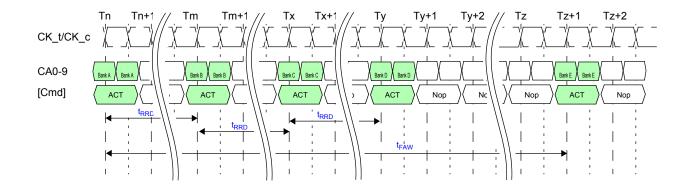
COMMAND Definitions and Timing Diagrams

Active

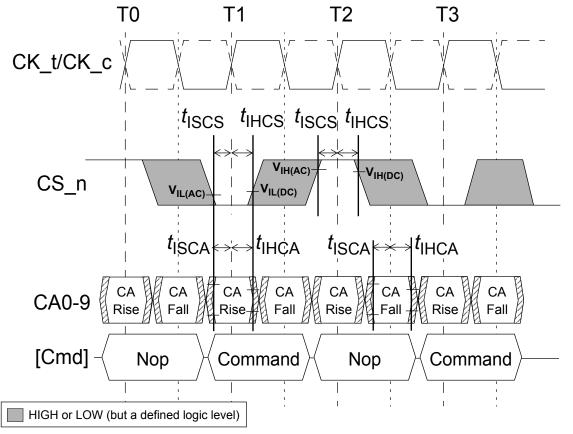
The Active command is issued by holding \overline{CS} LOW, CA0 LOW, and CA1 HIGH at the rising edge of the clock. The bank addresses BA0-BA2 are used to select the desired bank. The row addresses R0-R14 is used to determine which row in the selected bank. The Active command must be applied before any Read or Write operation can be executed. The device can accept a read or write command at time tRCD after the active command is sent. Once a bank has been active, it must be precharged before another Active command can be applied to the same bank. The bank active and precharge times are defined as tRAS and tRP, respectively. The minimum time interval between two successive ACTIVE commands on the same bank is determined by the RAS cycle time of the device (tRC). The minimum time interval between two successive ACTIVE commands on different banks is defined by tRRD.

Notes:

1. A Precharge-All command uses tRPab timing, while a Single Bank Precharge command uses tRPpb timing. In this figure, Trp is used to denote either an All-bank Precharge or a Single Bank Precharge.

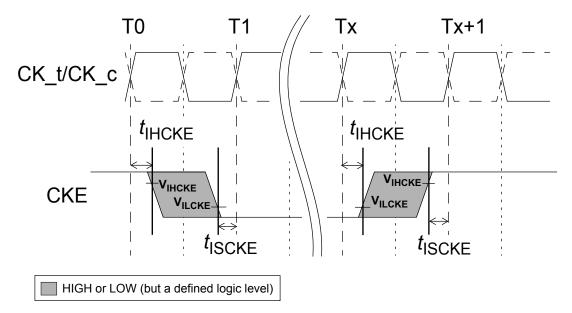

8-Bank Device Operation

Certain restriction on operation of the 8 bank devices must be observed. One for restricting the number of sequential Active commands that can be issued and another for allowing more time for RAS precharge for a Precharge All command. The rules are as follows:


8-bank device Sequential Bank Activation Restriction : No more than 4 banks may be activated (or refreshed, in the case of REFpb) in a rolling tFAW window. The number of clocks in a tFAW period is dependent upon the clock frequency, which may vary. If the clock frequency is not changed over this period, converting to clocks is done by dividing tFAW[ns] by tCK[ns], and rounding up to the next integer value. As an example of the rolling window, if RU(tFAW/tCK) is 10 clocks, and an ACTIVATE command is issued in clock n, no more than three further ACTIVATE commands can be issued at or between clock n + 1 and n + 9. REFpb also counts as bank activation for purposes of tFAW. If the clock frequency is changed during the tFAW period, the rolling tFAW window may be calculated in clock cycles by adding up the time spent in each clock period. The tFAW requirement is met when the previous n clock cycles exceeds the tFAW time.

8 bank device Precharge All allowance: tRP for a PRECHRGE ALL command must equal tRPab, which is greater than tRPpb.

Command Input Signal Timing Definition



Notes:

1. Setup and hold conditions also apply to the CKE pin. See section related to power down for timing diagrams related to the CKE pin.

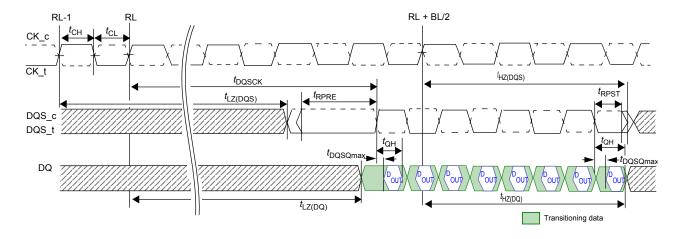
CKE Input Setup and Hold Timing

Notes:

1. After CKE is registered LOW, CKE signal level shall be maintained below VILCKE for tCKE specification (LOW pulse width).

2. After CKE is registered HIGH, CKE signal level shall be maintained above VIHCKE for tCKE specification (HIGH pulse width).

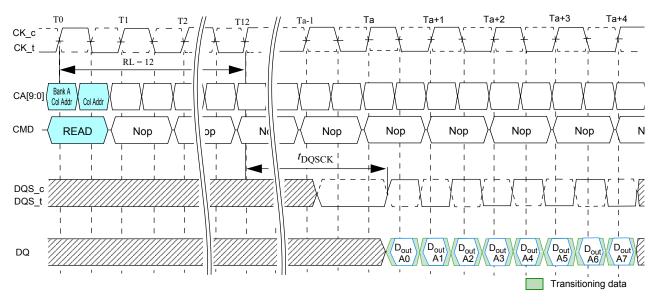
Read and Write access modes

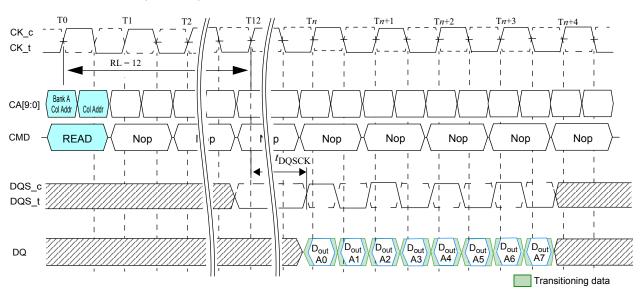

After a bank has been activated, a read or write cycle can be executed. This is accomplished by setting \overline{CS} LOW, CA0 HIGH, and CA1 LOW at the rising edge of the clock. CA2 must also be defined at this time to determine whether the access cycle is a read operation (CA2 HIGH) or a write operation (CA2 LOW).

The LPDDR3 SDRAM provides a fast column access operation. A single Read or Write Command will initiate a burst read or write operation on successive clock cycles. Burst interrupts are not allowed.

Burst Read

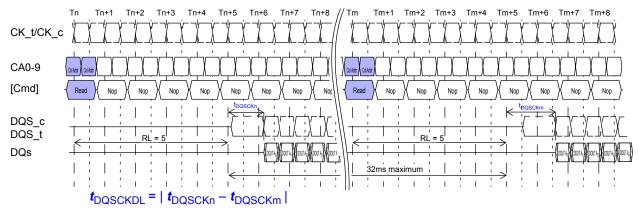
The Burst Read command is initiated by having \overline{CS} LOW, CA0 HIGH, CA1 LOW and CA2 HIGH at the rising edge of the clock. The command address bus inputs, CA5r-CA6r and CA1f-CA9f, determine the starting column address for the burst. The Read Latency (RL) is defined from the rising edge of the clock on which the Read Command is issued to the rising edge of the clock from which the tDQSCK delay is measured. The first valid datum is available RL * tCK + tDQSCK + tDQSQ after the rising edge of the clock where the Read Command is issued. The data strobe output is driven LOW tRPRE before the first rising valid strobe edge. The first bit of the burst is synchronized with the first rising edge of the data strobe. Each subsequent data-out appears on each DQ pin edge aligned with the data strobe. The RL is programmed in the mode registers. Timings for the data strobe are measured relative to the crosspoint of DQS and its complement, DQS.




Notes:

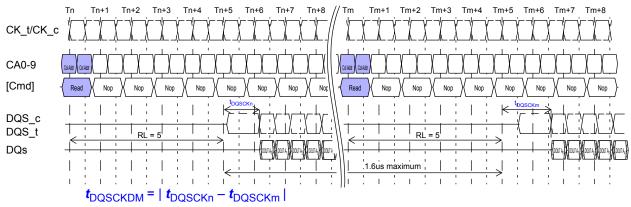
- 1. Tdqsck can span multiple clock periods.
- 2. An effective Burst Length of 8 is shown.

Burst Read: RL = 12, BL = 8, tDQSCK > tCK



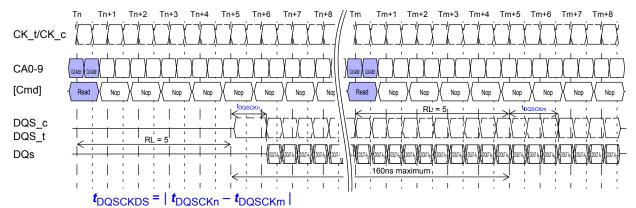
Burst Read: RL = 12, BL = 8, tDQSCK < tCK

tDQSCKDL timing

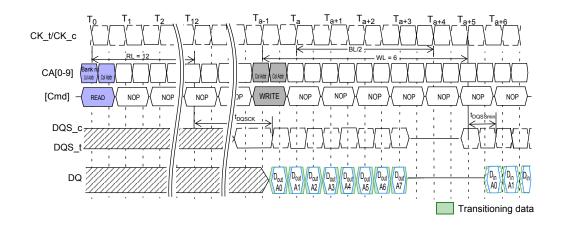


Notes:

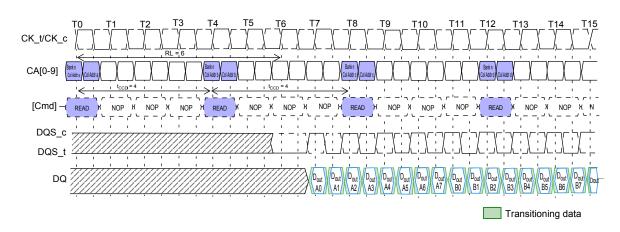
1. tDQSCKDLmax is defined as the maximum of ABS(tDQSCKn - tDQSCKm) for any {tDQSCKn ,tDQSCKm} pair within any 32ms rolling window.


tDQSCKDM timing

Notes:

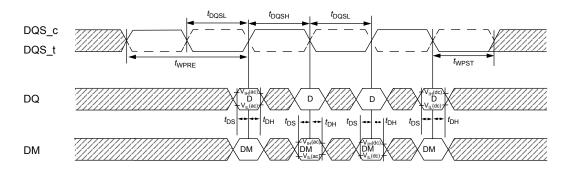

1. tDQSCKDMmax is defined as the maximum of ABS(tDQSCKn - tDQSCKm) for any {tDQSCKn,tDQSCKm} pair within any 1.6us rolling window.

tDQSCKDS timing


Notes:

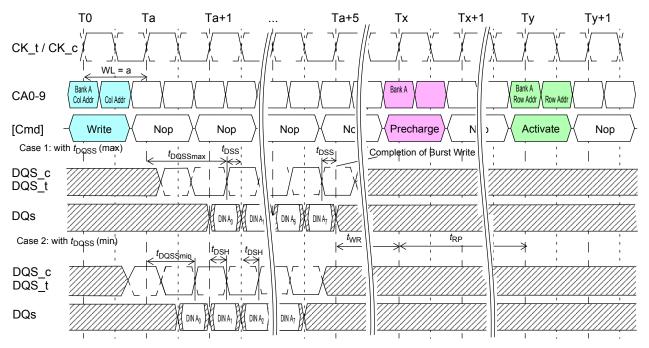
1.tDQSCKDSmax is defined as the maximum of ABS(tDQSCKn - tDQSCKm) for any {tDQSCKn ,tDQSCKm} pair for reads within a consecutive burst within any 160ns rolling window.

The minimum time from the burst READ command to the burst WRITE command is defined by the read latency (RL) and the burst length (BL). Minimum READ-to-WRITE latency is RL + RU(tDQSCK(MAX)/tCK) + BL/2 + 1 - WL clock cycles.

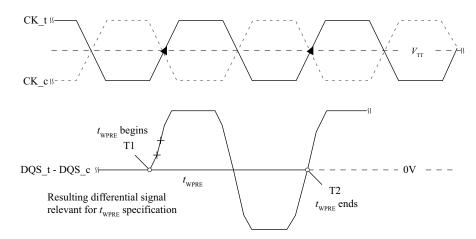


The seamless burst READ operation is supported by enabling a READ command at every fourth clock cycle for BL = 8 operation. This operation is supported as long as the banks are activated, whether the accesses read the same or different banks.

Burst Write


The burst WRITE command is initiated with \overline{CS} LOW, CA0 HIGH, CA1 LOW, and CA2 LOW at the rising edge of the clock. The command address bus inputs, CA5r-CA6r and CA1f-CA9f, determine the starting column address for the burst. Write latency (WL) is defined from the rising edge of the clock on which the WRITE command is issued to the rising edge of the clock from which the Tdqss delay is measured. The first valid data must be driven WL x Tck + Tdqss from the rising edge of the clock from which the WRITE command is issued. The data strobe signal (DQS) must be driven LOW Twpre prior to data input. The burst cycle data bits must be applied to the DQ pins Tds prior to the associated edge of the DQS and held valid until Tdh after that edge. Burst data is sampled on successive edges of the DQS until the 4-, 8-, or 16-bit burst length is completed. After a burst WRITE operation, Twr must be satisfied before a PRECHARGE command to the same bank can be issued. Pin input timings are measured relative to the cross point of DQS and its complement, \overline{DQS} .

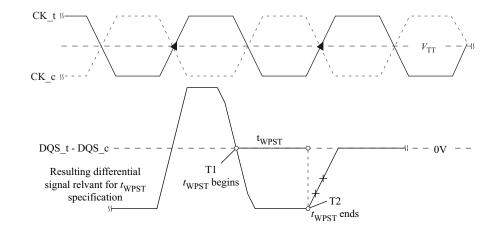
Data input (write) timing

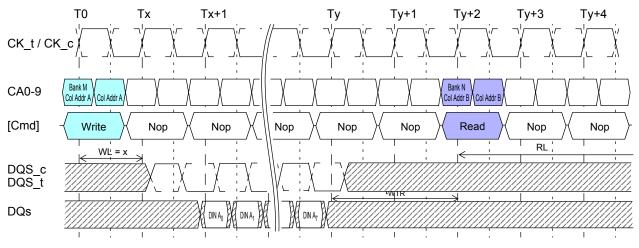

Burst Write

tWPRE Calculation

The method for calculating tWPRE is shown in the following figure.

Method for Calculating tWPRE Transitions and Endpoints

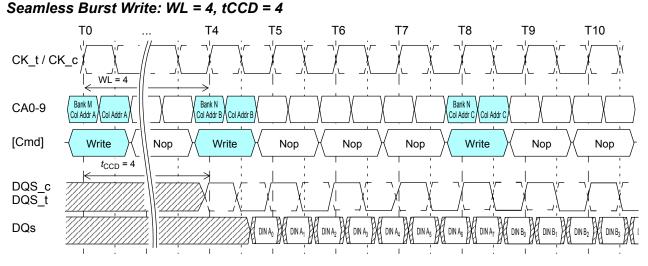



tWPST Calculation

The method for calculating tWPST is shown in the following figure.

Method for Calculating tWPST Transitions and Endpoints

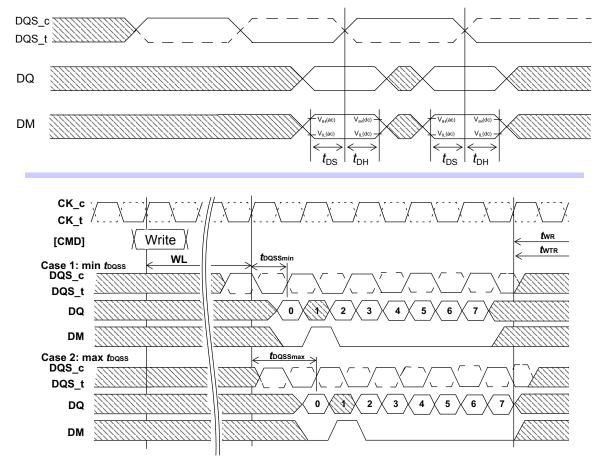
Burst Write Followed By Burst Read


Notes:

1. The minimum number of clock cycles from the burst write command to the burst read command for any bank is [WL +

1 + BL/2 + RU(tWTR/tCK)].

2. tWTR starts at the rising edge of the clock after the last valid input datum.


Notes:

1. The seamless burst write operation is supported by enabling a write command every four clocks for BL = 8 operation. This operation is allowed for any activated bank.

Write data Mask

One write data mask (DM) pin for each data byte (DQ) will be supported on LPDDR3 devices, consistent with the implementation on LPDDR2 SDRAMs. Each data mask (DM) may mask its respective data byte (DQ) for any given cycle of the burst. Data mask has identical timings on write operations as the data bits, though used as input only, is internally loaded identically to data bits to insure matched system timing.

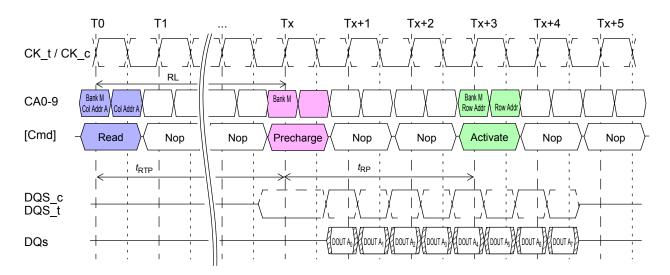
Notes:

1. For the data mask function, BL = 8 is shown; the second data bit is masked.

Precharge

The Precharge command is used to precharge or close a bank that has been activated. The Precharge command is initiated by having \overline{CS} LOW, CA0 HIGH, CA1 HIGH, CA2 LOW, and CA3 HIGH at the rising edge of the clock. The Precharge Command can be used to precharge each bank independently or all banks simultaneously. For 4-bank devices, the AB flag, and the bank address bits, BA0 and BA1, are used to determine which bank(s) to precharge. For 8-bank devices, the AB flag, and the bank address bits, BA0, BA1, and BA2, are used to determine which bank(s) to precharge. The bank(s) will be available for a subsequent row access tRPab after an All-Bank Precharge command is issued and tRPpb after a Single-Bank Precharge command is issued.

To ensure that LPDDR3 devices can meet the instantaneous current demand required to operate, the row-precharge time for an all-bank PRECHARGE (tRPab) will be longer than the row PRECHARGE time for a single-bank PRE-CHARGE (tRPpb).

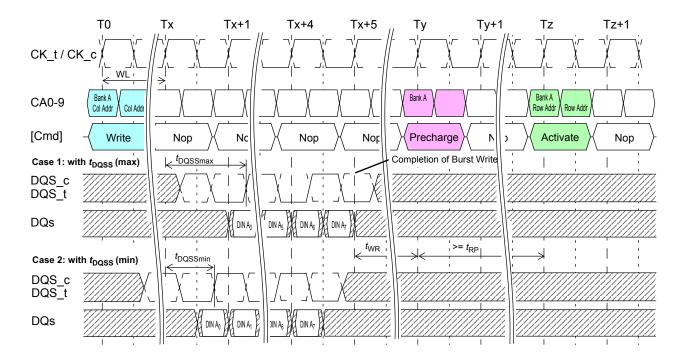


AB (CA4r)	BA2 (CA9r)	BA1 (CA8r)	BA0 (CA7r)	Precharged Bank(s) 8-bank device
0	0	0	0	Bank 0 only
0	0	0	1	Bank 1 only
0	0	1	0	Bank 2 only
0	0	1	1	Bank 3 only
0	1	0	0	Bank 4 only
0	1	0	1	Bank 5 only
0	1	1	0	Bank 6 only
0	1	1	1	Bank 7 only
1	DON'T CARE	DON'T CARE	DON'T CARE	All Banks

Bank selection for Precharge by address bits

Burst Read followed by precharge

For the earliest possible precharge, the precharge command may be issued BL/2 clock cycles after a Read command. A new bank active (command) may be issued to the same bank after the Row Precharge time (tRP). A precharge command can not be issued until after tRAS is satisfied. The minimum READ-to-PRECHARGE time must also satisfy a minimum analog time from the rising clock edge that initiates the last 8-bit prefetch of a READ command. tRTP begins BL/2 - 4 clock cycles after the READ command.


Burst Write followed by precharge

For write cycles, a delay must be satisfied from the time of the last valid burst input data until the Precharge command may be issued. This delay is known as the write recovery time (tWR) referenced from the completion of the burst write to the Precharge command. No Precharge command to the same bank should be issued prior to the tWR delay.

LPDDR3 devices write data to the array in prefetch multiples(prefetch = 8). An internal WRITE operation can only begin

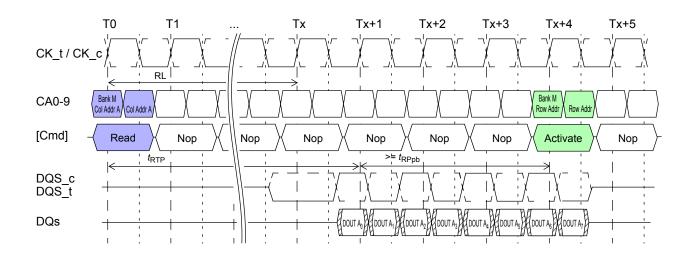
after a prefetch group has been completely latched, so tWR starts at prefetch boundaries. The minimum WRITE-to-PRECHARGE time for commands to the same bank is WL + BL/2 + 1 + RU(tWR/tCK) clock cycles..

Auto Precharge

Before a new row can be opened in an active bank, the active bank must be precharged using either the PRECHARGE command or the auto precharge function. When a READ or a WRITE command is issued to the device, the AP bit (CA0f) can be set to enable the active bank to automatically begin precharge at the earliest possible moment during the burst READ or WRITE cycle.

If AP is LOW when the READ or WRITE command is issued, then normal READ or WRITE burst operation is executed and the bank remains active at the completion of the burst.

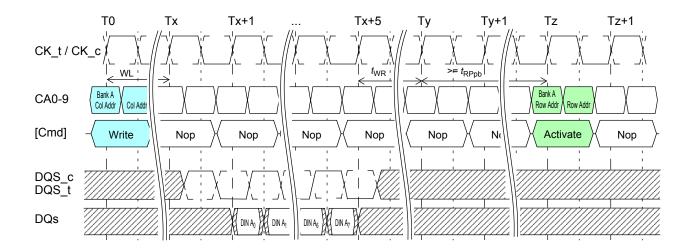
If AP is HIGH when the READ or WRITE command is issued, the auto precharge function is engaged. This feature enables the PRECHARGE operation to be partially or completely hidden during burst READ cycles (dependent upon READ or WRITE latency) thus improving system performance for random data access.


Burst Read with Auto Precharge

If AP (CA0f) is HIGH when a READ command is issued, the READ with auto-precharge function is engaged. LPDDR3 devices start an auto-precharge operation on the rising edge of the clock BL/2 or BL/2 - 4 + RU(tRTP/tCK) clock cycles later than the READ with auto precharge command, whichever is greater.

Following an auto-precharge operation, an ACTIVATE command can be issued to the same bank if the following two conditions are satisfied simultaneously:

- a) The RAS precharge time (tRP) has been satisfied from the clock at which the auto- precharge begins.
- b) The RAS cycle time (tRC) from the previous bank activation has been satisfied.


Burst Write with Auto Precharge

If AP (CA0f) is HIGH when a WRITE command is issued, the WRITE with auto precharge function is engaged. The device starts an auto precharge on the rising edge tWR cycles after the completion of the burst WRITE.

Following a WRITE with auto precharge, an ACTIVATE command can be issued to the same bank if the following two conditions are met:

The RAS precharge time (tRP) has been satisfied from the clock at which the auto- precharge begins.

The RAS cycle time (tRC) from the previous bank activation has been satisfied.

Precharge & Auto Precharge clarification

From Command	To Command	Minimum Delay between "From Command" to "To Command"	Unit	Notes
Read	Precharge (to same Bank as Read)	BL/2 + max(4, RU(tRTP/tCK)) - 4	clks	1
	Precharge All	BL/2 + max(4, RU(tRTP/tCK)) - 4	clks	1
	Precharge (to same Bank as Read w/AP)	BL/2 + max(4, RU(tRTP/tCK)) - 4	clks	1,2
	Precharge All	BL/2 + max(4, RU(tRTP/tCK)) - 4	clks	1
Read w/AP	Activate (to same Bank as Read w/AP)	BL/2 + max(4, RU(tRTP/tCK)) - 4 + RU(tRPpb/tCK)	clks	1
Read w/AP	Write or Write w/AP (same bank)	Illegal	clks	3
	Write or Write w/AP (different bank)	RL + BL/2+ RU(tDQSCKmax/tCK) - WL + 1	clks	3
	Read or Read w/AP (same bank)	Illegal	clks	3
	Read or Read w/AP (different bank)	BL/2	clks	3
Write	Precharge (to same Bank as Write)	WL + BL/2 + RU(tWR/tCK) + 1	clks	1
	Precharge All	WL + BL/2 + RU(tWR/tCK) + 1	clks	1
	Precharge (to same Bank as Write w/AP)	WL + BL/2 + RU(tWR/tCK) + 1	clks	1
	Precharge All	WL + BL/2 + RU(tWR/tCK) + 1	clks	1
	Activate (to same Bank as Write w/AP)	WL + BL/2 + RU(tWR/tCK) + 1 + RU(tRPpb/tCK)	clks	1
Write w/AP	Write or Write w/AP (same bank)	Illegal	clks	3
	Write or Write w/AP (different bank)	BL/2	clks	3
	Read or Read w/AP (same bank)	Illegal	clks	3
	Read or Read w/AP (different bank)	WL + BL/2 + RU(tWTR/tCK) + 1	clks	3
Precharge	Precharge (to same Bank as Precharge)	1	clks	1
	Precharge All	1	clks	1
Precharge	Precharge	1	clks	1
All	Precharge All	1	clks	1

Notes:

1. For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge or precharge all, issued to that bank. The precharge period is satisfied after tRP depending on the latest precharge command issued to that bank.

2. Any command issued during the minimum delay time as specified above table is illegal.

3. After Read with AP, seamless read operations to different banks are supported. After Write with AP, seamless write operations to different banks are supported. Read w/AP and Write w/AP may not be interrupted or truncated.

Refresh Command

The Refresh Command is initiated by having \overline{CS} LOW, CA0 LOW, CA1 LOW, and CA2 HIGH at the rising edge of clock. Per Bank Refresh is initiated by having CA3 LOW at the rising edge of the clock and All Bank Refresh is initiated by having CA3 HIGH at the rising edge of clock.

A per-bank REFRESH command (REFpb) performs a per-bank REFRESH operation to the bank scheduled by the bank counter in the memory device. The bank sequence for per-bank REFRESH is fixed to be a sequential round-robin: 0-1-2-3-4-5-6-7-0-1-.... The bank count is synchronized between the controller and the SDRAM by resetting the bank count to zero. Synchronization can occur upon issuing a RESET signal or at every exit from self refresh. Bank addressing for the per-bank REFRESH count is the same as established for the single-bank PRECHARGE command. A bank must be idle before it can be refreshed. The controller must track the bank being refreshed by the per-bank REFRESH command.

The REFpb command must not be issued to the device until the following conditions are met:

- tRFCab has been satisfied after the prior REFab command

- tRFCpb has been satisfied after the prior REFpb command
- tRP has been satisfied after the prior PRECHARGE command to that bank

- tRRD has been satisfied after the prior ACTIVATE command (if applicable, for example after activating a row in a different bank than the one affected by the REFpb command).

The target bank is inaccessible during per-bank REFRESH cycle time (tRFCpb), however, other banks within the device are accessible and can be addressed during the cycle. During the REFpb operation, any of the banks other than the one being refreshed can be maintained in an active state or accessed by a READ or a WRITE command. When the per-bank REFRESH cycle has completed, the affected bank will be in the idle state.

After issuing REFpb, these conditions must be met:

- tRFCpb must be satisfied before issuing a REFab command
- tRFCpb must be satisfied before issuing an ACTIVATE command to the same bank
- tRRD must be satisfied before issuing an ACTIVATE command to a different bank
- tRFCpb must be satisfied before issuing another REFpb command

An all-bank REFRESH command (REFab) issues a REFRESH command to all banks. All banks must be idle when REFab is issued (for instance, by issuing a PRECHARGE-all command prior to issuing an all-bank REFRESH command). REFab also synchronizes the bank count between the controller and the SDRAM to zero. The REFab command must not be issued to the device until the following conditions have been met:

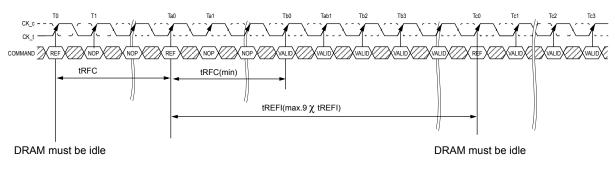
- tRFCab has been satisfied after the prior REFab command
- tRFCpb has been satisfied after the prior REFpb command
- tRP has been satisfied following the prior PRECHARGE commands

When an all-bank refresh cycle has completed, all banks will be idle. After issuing REFab:

- the tRFCab latency must be satisfied before issuing an ACTIVATE command
- the tRFCab latency must be satisfied before issuing a REFab or REFpb command

REFRESH Command Scheduling Separation Requirements

Symbol	minimum delay from	to	Notes
tRFCab	REFab	REFab	
		Activate cmd to any bank	
		REFpb	
tRFCpb	REFpb		
		Activate cmd to same bank as REFpb	
		REFpb	
tRRD	REFpb	Activate cmd to different bank than REFpb	
-	Activate	REFpb affecting an idle bank (different bank than Activate)	1
		Activate cmd to different bank than prior Activate cmd	

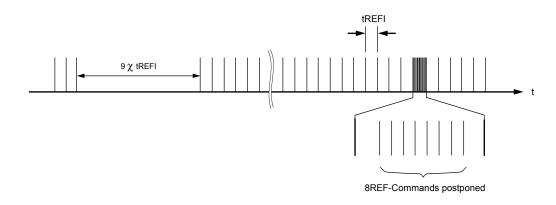

Notes:

1. A bank must be in the idle state before it is refreshed, so following an ACTIVATE command REFab is prohibited; REFpb is supported only if it affects a bank that is in the idle state.

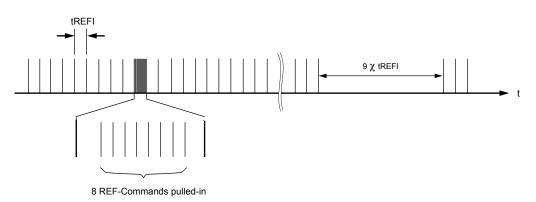
In general, an all bank refresh command needs to be issued to the LPDDR3 SDRAM regularly every tREFI interval. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided for postponing and pulling-in refresh command. A maximum of 8 Refresh commands can be postponed during operation of the LPDDR3 SDRAM, meaning that at no point in time more than a total of 8 Refresh commands are allowed to be postponed. In case that 8 Refresh commands are postponed in a row, the resulting maximum interval between the surrounding Refresh commands is limited to 9 x tREFI. A maximum of 8 additional Refresh commands can be issued in advance ("pulled in"), with each one reducing the number of regular Refresh commands required later by one. Note that pulling in more than 8, depending on Refresh mode, Refresh commands in advance does not further reduce the number of regular Refresh commands required later, so that the resulting maximum interval between two surrounding Refresh commands is limited to 9 x tREFI. At any given time, a maximum of 16 REF commands can be issued within 2 x tREFI.

And for per bank refresh, a maximum 8 x 8 per bank refresh commands can be postponed or pulled in for scheduling efficiency. At any given time, a maximum of 2 x 8 x 8 per bank refresh commands can be issued within 2 x tREFI.

Refresh Command Timing


🖉 Time Break 🛛 Don't Care

Notes:


- 1. Only NOP commands allowed after Refresh command registered untill tRFC(min) expires.
- 2. Time interval between two Refresh commands may be extended to a maximum of 9 X tREFI.

Postponing Refresh Commands

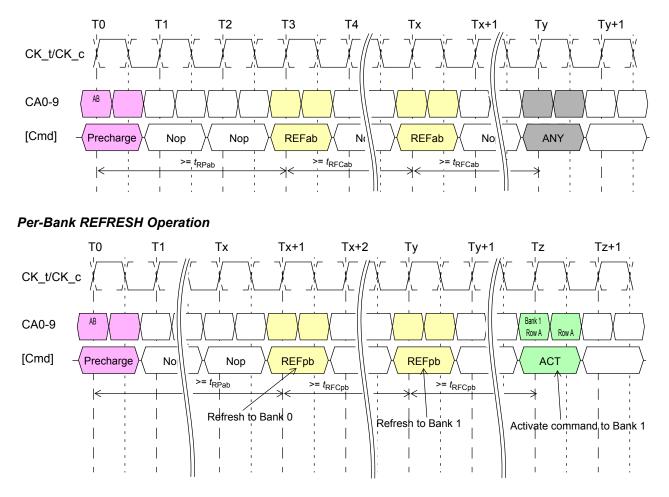
Pulling-in Refresh Commands

Refresh Requirements

(1) Minimum number of Refresh commands:

LPDDR3 requires a minimum number, R, of REFRESH (REFab) commands within any rolling refresh window (Trefw = 32 ms @ MR4[2:0] = 011 or TC =< 85'C). For tREFW and tREFI refresh multipliers at different MR4 settings, refer to the MR4 definition.

When using per-bank REFRESH, a REFab command can be replaced by a full cycle of eight REFpb commands.


(2) Refresh Requirements and Self-Refresh:

Self refresh mode may be entered with a maximum of eight refresh commands being postponed. After exiting selfrefresh mode with one or more refresh commands postponed, additional refresh commands may be postponed to the extent that the total number of postponed refresh commands (before and after the self refresh) will never exceed eight. During self-refresh mode, the number of postponed or pulled-in REF commands does not change.

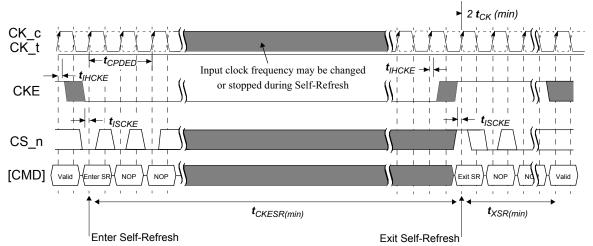
"The use of self refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE is raised for exit from self refresh mode. Upon exit from self refresh, the LPDDR3 SDRAM requires a minimum of one extra refresh command before it is put back into self refresh mode."

All-Bank REFRESH Operation

Notes:

- 1. In the beginning of this example, the REFpb bank is pointing to bank 0.
- 2. Operations to banks other than the bank being refreshed are supported during the tRFCpb period.

Self Refresh Operation


The Self Refresh command can be used to retain data in the LPDDR3 SDRAM, even if the rest of the system is powered down. When in the Self Refresh mode, the LPDDR3 SDRAM retains data without external clocking. The LPDDR3 SDRAM device has a built-in timer to accommodate Self Refresh operation. The Self Refresh Command is defined by having CKE LOW, \overline{CS} LOW, CA0 LOW, CA1 LOW, and CA2 HIGH at the rising edge of the clock. CKE must be HIGH during the previous clock cycle. CKE must not go LOW while MRR, MRW, READ, or WRITE operations are in progress. To ensure that there is enough time to account for internal delay on the CKE signal path, two NOP commands are required after CKE is driven LOW, this timing period is defined as tCPDED. CKE LOW will result in deactivation of input receivers after tCPDED has expired. Once the command is registered, CKE must be held LOW to keep the device in Self Refresh mode.

LPDDR3 devices can operate in Self Refresh in both the Standard or Extended Temperature Ranges. LPDDR3 devices will also manage Self Refresh power consumption when the operating temperature changes, lower at low temperature and higher at high temperature.

Once the LPDDR3 SDRAM has entered Self Refresh mode, all of the external signals except CKE, are "don't care". For proper self refresh operation, power supply pins (VDD1, VDD2, and VDDCA) must be at valid levels. VDDQ may be turned off during Self-Refresh. Prior to exiting Self-Refresh, VDDQ must be within specified limits. VrefDQ and VrefCA may be at any level within minimum and maximum levels (see Absolute Maximum DC Ratings). However prior to exiting Self-Refresh, VrefDQ and VrefCA must be within specified limits (see Recommended DC Operating Conditions). The SDRAM initiates a minimum of one all-bank refresh command internally within tCKESR period once it enters Self Refresh mode. The clock is internally disabled during Self Refresh Operation to save power. The minimum time that the SDRAM must remain in Self Refresh mode is tCKESR,min. The user may change the external clock frequency or halt the external clock tCPDED after Self Refresh entry is registered; however, the clock must be restarted and stable before the device can exit Self Refresh operation.

The procedure for exiting Self Refresh requires a sequence of commands. First, the clock shall be stable and within specified limits for a minimum of 2 tCK prior to the positive clock edge that registers CKE HIGH. Once Self Refresh Exit is registered, a delay of at least tXSR must be satisfied before a valid command can be issued to the device to allow for any internal refresh in progress. CKE must remain HIGH for the entire Self Refresh exit period tXSR for proper operation. NOP commands must be registered on each positive clock edge during the Self Refresh exit interval tXSR. For the description of ODT operation and specifications during self-refresh entry and exit, see section On-Die Termination.

The use of Self Refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE is raised for exit from Self Refresh mode. Upon exit from Self Refresh, it is required that at least one REFRESH command (8 per-bank or 1 all-bank) is issued before entry into a subsequent Self Refresh.

Notes:

1. Input clock frequency may be changed or can be stopped or floated during self-refresh, provided that upon exiting

self-refresh, the clock is stable and within specified limits for a minimum of 2 clocks of stable clock are provided and the clock frequency is between the minimum and maximum frequency for the speed grade in use.

- 2. Device must be in the "All banks idle" state prior to entering Self Refresh mode.
- 3. tXSR begins at the rising edge of the clock after CKE is driven HIGH.
- 4. A valid command may be issued only after tXSR is satisfied. NOPs shall be issued during tXSR.

Partial Array Self-Refresh: Bank Masking

The LPDDR3 SDRAM has eight banks (additional banks may be required for higher densities). Each bank of an LPDDR3 SDRAM can be independently configured whether a self refresh operation is taking place. One mode register unit of 8 bits, accessible via MRW command, is assigned to program the bank masking status of each bank up to 8 banks. For bank masking bit assignments, see Mode Register 16.

The mask bit to the bank controls a refresh operation of entire memory within the bank. If a bank is masked via MRW, a refresh operation to the entire bank is blocked and data retention by a bank is not guaranteed in self refresh mode. To enable a refresh operation to a bank, a coupled mask bit has to be programmed, "unmasked". When a bank mask bit is unmasked, a refresh to a bank is determined by the programmed status of segment mask bits, which is decribed in the following chapter.

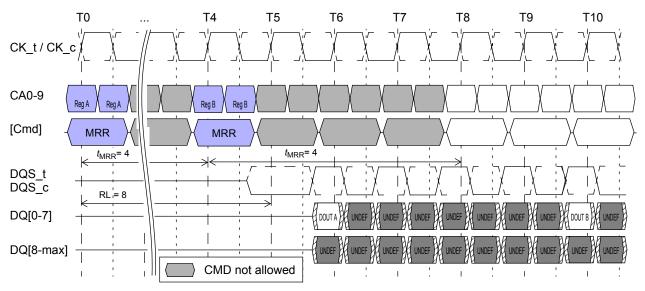
Partial Array Self-Refresh: Segment Masking

A segment masking scheme may be used in lieu of or in combination with the bank masking scheme in LPDDR3 SDRAM. LPDDR3 devices utilize eight segments per bank. For segment masking bit assignments, see Mode register 17.

For those refresh-enabled banks, a refresh operation to the address range which is represented by a segment is blocked when the mask bit to this segment is programmed, "masked". Programming of segment mask bits is similar to the one of bank mask bits. Eight segments are used as listed in MR17. One mode register unit is used for the programming of segment mask bits up to 8 bits. One more mode register unit may be reserved for future use. Programming of bits in the reserved registers has no effect on the device operation.

	Segment Mask (MR17)	Bnak 0	Bank 1	Bank 2	Bank 3	Bnak 4	Bank 5	Bank 6	Bank 7
Bank Mask (MR16)		0	1	0	0	0	0	0	1
Segment 0	0		М						М
Segment 1	0		М						М
Segment 2	1	М	М	М	М	М	М	М	М
Segment 3	0		М						М
Segment 4	0		М						М
Segment 5	0		М						М
Segment 6	0		М						М
Segment 7	1	М	М	М	М	М	М	М	М

Notes:


1. This table illustrates an example of an 8-bank LPDDR3 device, when a refresh operation to bank 1 and bank 7, as well as segment 2 and segment 7 are masked.

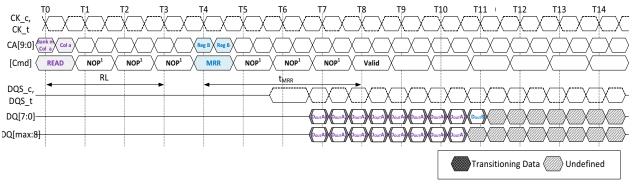
Mode Register Read (MRR) Command

The Mode Register Read (MRR) command is used to read configuration and status data from mode registers from SDRAM mode registers. The MRR command is initiated with CS LOW, CA0 LOW, CA1 LOW, CA2 LOW, and CA3 HIGH at the rising edge of the clock. The mode register is selected by CA1f-CA0f and CA9r-CA4r. The mode register contents are available on the first data beat of DQ[7:0] after RL x tCK + tDQSCK + tDQSQ following the rising edge of the clock where MRR is issued. Subsequent data beats contain valid but undefined content, except in the case of the DQ calibration function, where subsequent data beats contain valid content as described in the DQ Calibration specification. All DQS are toggled for the duration of the mode register read burst.

The MRR command has a burst length of eight. MRR operation (consisting of the MRR command and the corresponding data traffic) must not be interrupted.

Notes:

1. MRRs to DQ calibration registers MR32 and MR40 are described in "DQ calibration".


2. Only the NOP command is supported during tMRR.

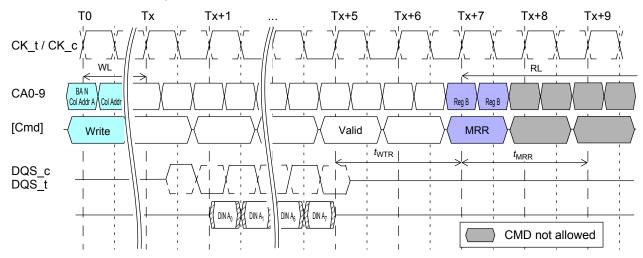
3. Mode register data is valid only on DQ[7:0] on the first beat. Subsequent beats contain valid but undefined data. DQ[MAX:8] contain valid but undefined data for the duration of the MRR burst.

4. Minimum Mode Register Read to write latency is RL + RU(tDQSCKmax/tCK) + 8/2 + 1 - WL clock cycles.

5. Minimum Mode Register Read to Mode Register Write latency is RL + RU(tDQSCKmax/tCK) + 8/2 + 1clock cycles. 6. In this example, RL = 8 for illustration purposes only.

Read to MRR Timing

Notes:

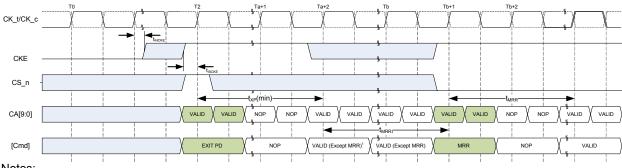

1. Only the NOP command is supported during tMRR.

2. The minimum number of clock cycles from the burst READ command to the MRR command is BL/2.

After a prior READ command, the MRR command must not be issued earlier than BL/2 clock cycles, or WL + 1 + BL/2 + RU(tWTR/tCK) clock cycles after a prior WRITE command, as READ bursts and WRITE bursts must not be truncated by MRR.

Burst Write Followed by MRR

Notes:


1. The minimum number of clock cycles from the burst write command to the Mode Register Read command is [WL + 1

+ BL/2 + RU(tWTR/tCK)].

2. Only the NOP command is supported during tMRR.

MRR Following Idle Power-Down State

Following the idle power-down state, an additional time, tMRRI, is required prior to issuing the mode register read (MRR) command. This additional time (equivalent to tRCD) is required in order to be able to maximize power-down current savings by allowing more power-up time for the MRR data path after exit from standby, idle power-down mode.

Notes:

1. Any valid command from the idle state except MRR.

^{2.} tMMRI = tRCD.

Temperature Sensor

LPDDR3 devices feature a temperature sensor whose status can be read from MR4. This sensor can be used to determine an appropriate refresh rate, determine whether AC timing derating is required in the extended temperature range, and/or monitor the operating temperature. Either the temperature sensor or the device operating temperature can be used to determine if operating temperature requirements are being met.

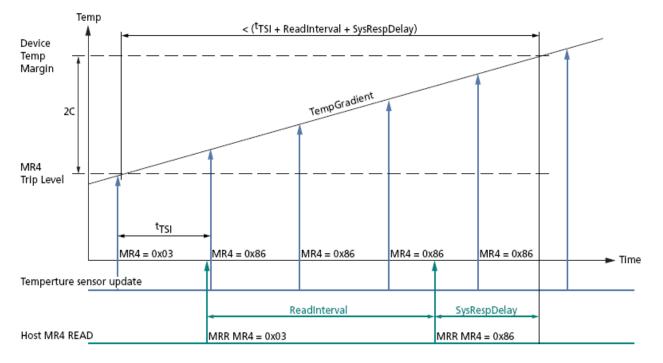
LPDDR3 devices shall monitor device temperature and update MR4 according to tTSI. Upon exiting self-refresh or power-down, the device temperature status bits shall be no older than tTSI.

When using the temperature sensor, the actual device case temperature may be higher than the operating temperature specification that applies for the standard or extended temperature ranges. For example, TCASE could be above 85'C when MR4[2:0] equals 011B. LPDDR3 devices shall allow for 2'C temperature margin between the point at which the device updates the MR4 value and the point at which the controller re-configures the system accordingly. In the case of tight thermal coupling of the memory device to external hot spots, the maximum device temperature might be higher than what is indicated by MR4.

To assure proper operation using the temperature sensor, applications should consider the following factors:

Parameter	Symbol	Max/Min	Value	Unit	Notes
System Temperature Gradient	TempGradient	Max	System Dependent		Maximum temperature gradient experi- enced by the memory device at the tem- perature of interest over a range of 2'C.
MR4 Read Interval	ReadInterval	Max	System Dependent	ms	Time period between MR4 READs from the system.
Temperature Sensor Interval	tTSI	Max	32	ms	Maximum delay between internal updates of
System Response Delay	SysRespDelay	Max	System Dependent		Maximum response time from an MR4 READ to the system response.
Device Temperature Margin	TempMargin	Max	2		Margin above maximum temperature to support controller response.

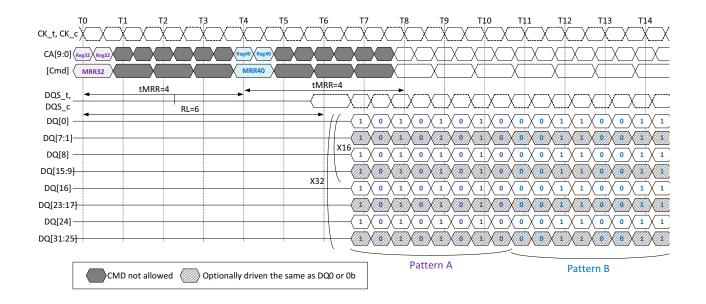
These devices accommodate the 2 degree Celsius temperature margin between the point at which the device temperature enters the extended temperature range and point at which the controller re-configures the system accordingly. To determine the required MR4 polling frequency, the system must use the maximum TempGradient and the maximum response time of the system using the following equation:


TempGradient x (ReadInterval + tTSI + SysRespDelay) =< 2'C

For example, if TempGradient is 10'C/s and the SysRespDelay is 1ms:

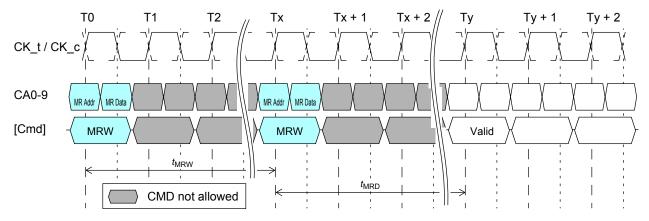
10'C/s x (ReadInterval + 32ms + 1ms) =< 2'C

In this case, ReadInterval shall be no greater than 167 ms.


Temp Sensor Timing

DQ Calibration

LPDDR3 devices feature a DQ calibration function that outputs one of two predefined system-timing calibration patterns. MRR to MR32 (pattern A) or MRR to MR40 (pattern B) will return the specified pattern on DQ0 and DQ8 for x16 devices and DQ0, DQ8, DQ16, and DQ24 for x32 devices. For x16 devices, DQ[7:1] and DQ[15:9] drive the same information as DQ0 during the MRR burst. For x32 devices, DQ[7:1], DQ[15:9], DQ[23:17], and DQ[31:25] drive the same information as DQ0 during the MRR burst. MRR DQ calibration commands can occur only in the idle state.


	Bit Time 0	Bit Time 1	Bit Time 2	Bit Time 3	Bit Time 4	Bit Time 5	Bit Time 6	Bit Time 7
Pattern "A" (MR32)	1	0	1	0	1	0	1	0
Pattern "B" (MR40)	0	0	1	1	0	0	1	1

Mode Register Write (MRW) Command

The MRW command is used to write configuration data to mode registers. The MRW command is initiated with \overline{CS} LOW, CA0 LOW, CA1 LOW, CA2 LOW, and CA3 LOW at the rising edge of the clock. The mode register is selected by CA1f-CA0f, CA9r-CA4r. The data to be written to the mode register is contained in CA9f-CA2f. The MRW command period is defined by TMRW. Mode register WRITEs to read-only registers have no impact on the functionality of the device.

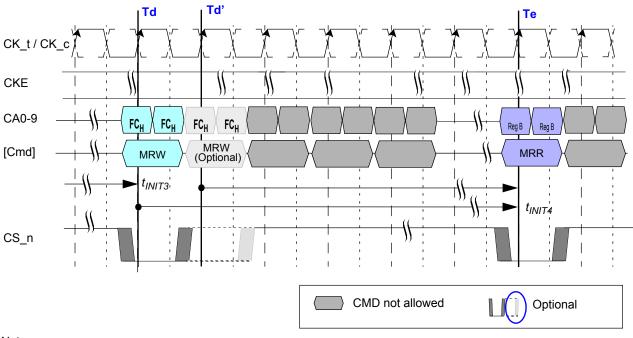
Notes:

1. At time Ty, the device is in the idle state.

2. Only the NOP command is supported during tMRW.

Mode Register Write

The MRW can only be issued when all banks are in the idle precharge state. One method of ensuring that the banks are in this state is to issue a PRECHARGE-ALL command.


Current Stat	Command	Intermediate State	Next State
	MRR	Mode Register Reading (All Banks idle)	All Banks idle
All Banks idle	MRW	Mode Register Writing (All Banks idle)	All Banks idle
	MRW (Reset)	Restting (Device Auto-Init)	All Banks idle
	MRR	Mode Register Reading (Bank(s) idle)	Bank(s) Active
Bank(s) Active	MRW	Not Allowed	Not Allowed
_	MRW (Reset)	Not Allowed	Not Allowed

Truth Table for Mode Register Read (MRR) and Mode Register Write (MRW)

Mode Register Write Reset (MRW Reset)

The MRW RESET command brings the device to the device auto-initialization (resetting) state in the power-on initialization sequence. The MRW RESET command can be issued from the idle state. This command resets all mode registers to their default values. After MRW RESET, boot timings must be observed until the device initialization sequence is complete and the device is in the idle state. Array data is undefined after the MRW RESET command.

If the initialization is to be performed at-speed (greater than the recommended boot clock frequency), then CA Training may be necessary to ensure setup and hold timings. Since the MRW RESET command is required prior to CA Training it may be difficult to meet setup and hold requirements. User may however choose the OP code 0xFCh. This encoding ensures that no transitions are required on the CA bus between rising and falling clock edge. Prior to CA Training, it is recommended to hold the CA bus stable for one cycle prior to, and one cycle after, the issuance of the MRW RESET command to ensure setup and hold timings on the CA bus.

Notes:

1. Optional MRW RESET command and optional CS_n assertion are allowed, When optional MRW RESET command is used, tINIT4 starts at Td'.

Mode Register Write ZQ Calibration command

The MRW command is used to initiate the ZQ calibration command. This command is used to calibrate the output driver impedance and on-die termination across process, temperature, and voltage. LPDDR3 devices support ZQ calibration.

There are four ZQ calibration commands and related timings: tZQINIT, tZQRESET, tZQCL, and tZQCS. tZQINIT is for initialization calibration; tZQRESET is for resetting ZQ to the default output impedance; tZQCL is for long calibration(s); and tZQCS is for short calibration(s).

The initialization ZQ calibration (ZQINIT) must be performed for LPDDR3. ZQINIT provides an output impedance accuracy of +/-15 percent. After initialization, the ZQ calibration long (ZQCL) can be used to recalibrate the system to an output impedance accuracy of +/-15 percent. A ZQ calibration short (ZQCS) can be used periodically to compensate for temperature and voltage drift in the system. The ZQ reset command (ZQRESET) resets the output impedance calibration to a default accuracy of +/-30% across process, voltage, and temperature. This command is used to ensure output impedance accuracy to +/-30% when ZQCS and ZQCL commands are not used.

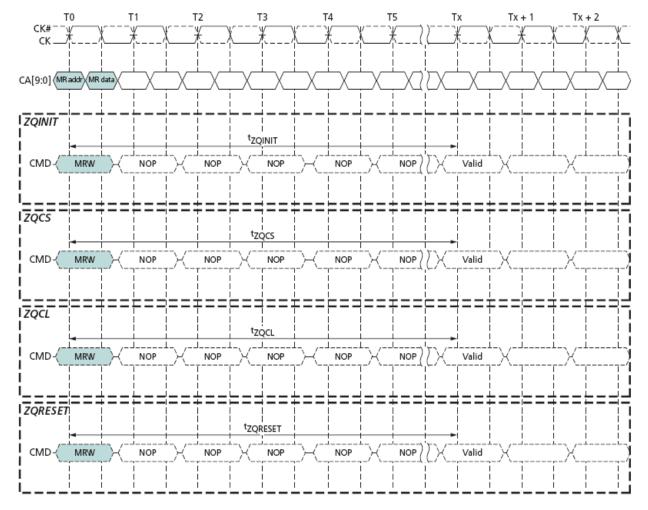
One ZQCS command can effectively correct at least 1.5% (ZQCorrection) of output impedance errors within tZQCS for all speed bins, assuming the maximum sensitivities specified are met. The appropriate interval between ZQCS commands can be determined from using these tables and system-specific parameters.

LPDDR3 devices are subject to temperature drift rate (Tdriftrate) and voltage drift rate (Vdriftrate) in various applications. To accommodate drift rates and calculate the necessary interval between ZQCS commands, apply the following formula:

ZQcorrection

----- = CalibrationInterval

(Tsens x Tdriftrate) + (Vsens x Vdriftrate)


Where Tsens = MAX (dRONdT) and Vsens = MAX (dRONdV) define temperature and voltage sensitivities.

For example, if Tsens = 0.75%/C, Vsens = 0.20%/mV, Tdriftrate = 1C/sec, and Vdriftrate = 15mV/sec, then the interval between ZQCS commands is calculated as:

1.5 ----- = 0.4s (0.75 x 1) + (0.20 x 15)

A ZQ calibration command can only be issued when the device is in the idle state with all banks precharged. ODT shall be disabled via the mode register or the ODT pin prior to issuing a ZQ calibration command. No other activities can be performed on the data bus and the data bus shall be un-terminated during calibration periods (tZQINIT, tZQCL, or tZQCS). The quiet time on the data bus helps to accurately calibrate output impedance. There is no required quiet time after the ZQ RESET command. If multiple devices share a single ZQ resistor, only one device can be calibrating at any given time. After calibration is complete, the ZQ ball circuitry is disabled to reduce power consumption. In systems sharing a ZQ resistor between devices, the controller must prevent tZQINIT, tZQCS, and tZQCL overlap between the devices. ZQ RESET overlap is acceptable.

ZQ Calibration Initialization timing example

Notes:

1. Only the NOP command is supported during ZQ calibration.

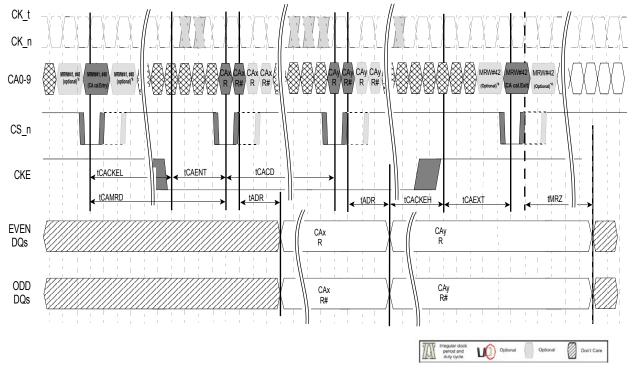
2. CKE must be registered HIGH continuously during the calibration period.

3. All devices connected to the DQ bus should be High-Z during the calibration process.

ZQ External Resistor Value, Tolerance and Capacitive Loading

To use the ZQ Calibration function, a 240 Ohm +/- 1% tolerance external resistor must be connected between the ZQ pin and ground. A single resistor can be used for each device or one resistor can be shared between multiple devices if the ZQ calibration timings for each device do not overlap. The total capacitive loading on the ZQ pin must be limited.

Mode Register Write - CA Training Mode


Because CA inputs operate as double data rate, it may be difficult for memory controller to satisfy CA input setup/hold timings at higher frequency. A CA Training mechanism is provided.

CA Training Sequence

a) CA Training mode entry: Mode Register Write to MR41

- b) CA Training session: Calibrate CA0, CA1, CA2, CA3, CA5, CA6, CA7 and CA8
- c) CA to DQ mapping change: Mode Register Write to MR48
- d) Additional CA Training session: Calibrate remaining CA pins (CA4 and CA9)
- e) CA Training mode exit: Mode Register Write to MR42

CA Training Timing

Notes:

1. Unused DQ must be valid HIGH or LOW during data output period. Unused DQ may transition at the same time as the active DQ. DQS must remain static and not transition.

2. CA to DQ mapping change via MR48 omitted here for clarity of the timing diagram. Both MR41 and MR48 training sequences must be completed before exiting the training mode (MR42). To enable a CA to DQ mapping change, CKE must be driven HIGH prior to issuance of the MRW 48 command.

3. Because data out control is asynchronous and will be an analog delay from when all the CA data is available, tADR and tMRZ are defined from CK_t (CK) falling edge.

4. It is recommended to hold the CA bus stable for one cycle prior to and one cycle after the issuance of the MRW CA training entry/exit command to ensure setup and hold timings on the CA bus.

5. Clock phase may be adjusted in CA training mode while CS_n (\overline{CS}) is high and CKE is low resulting in an irregular clock with shorter/longer periods and pulse widths.

6. Optional MRW 41, 48, 42 command and CA calibration command are allowed. To complement these optional commands, optional CS_n (CS) assertions are also allowed. All timing must comprehend these optional CS_n (CS) assertions:

a) tADR starts at the falling clock edge after the last registered CS_n (CS) assertion.

b) tCACD, tCACKEL, tCAMRD start with the rising clock edge of the last CS_n (\overline{CS}) assertion.

c) tCAENT, tCAEXT need to be met by the first CS_n (\overline{CS}) assertion.

d) tMRZ will be met after the falling clock edge following the first CS_n (\overline{CS}) assertion with exit (MRW#42) command.

The LPDDR3 SDRAM may not properly recognize a Mode Register Write command at normal operation frequency before CA Training is finished. Special encodings are provided for CA Training mode enable/disable. MR41 and MR42 encodings are selected so that rising edge and falling edge values are the same. The LPDDR3 SDRAM will recognize MR41 and MR42 at normal operation frequency even before CA timing adjustment is finished. Calibration data will be output through DQ pins. CA to DQ mapping is described in below table.

After timing calibration with MR41 is finished, users will issue MRW to MR48 and calibrate remaining CA pins (CA4 and CA9) using (DQ0/DQ1and DQ8/DQ9) as calibration data output pins.

	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9
Rising Edge	L	L	L	L	Н	L	L	Н	L	н
Falling Edge	L	L	L	L	н	L	L	Н	L	н

CA Training mode enable (MR41(29H, 0010 1001B), OP=A4H(1010 0100B))

CA Training mode enable (MR42(2AH,0010 1010B),OP=A8H(1010 1000B))

	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9
Rising Edge	L	L	L	L	L	Н	L	Н	L	н
Falling Edge	L	L	L	L	L	Н	L	Н	L	Н

CA to DQ mapping (CA Training mode enabled with MR41)

	CA0	CA1	CA2	CA3	CA5	CA6	CA7	CA8
Rising Edge	DQ0	DQ2	DQ4	DQ6	DQ8	DQ10	DQ12	DQ14
Falling Edge	DQ1	DQ3	DQ5	DQ7	DQ9	DQ11	DQ13	DQ15

CA Training mode enable (MR48(30H, 0011 0000B), OP=C0H(1100 0000B))

	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9
Rising Edge	L	L	L	L	L	L	L	L	Н	Н
Falling Edge	L	L	L	L	L	L	L	L	Н	Н

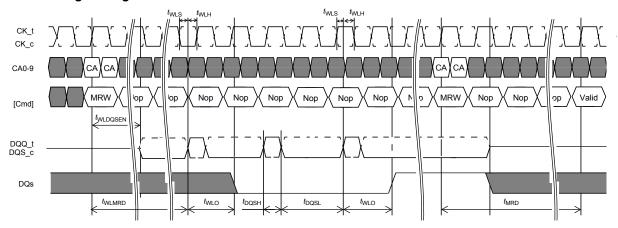
CA to DQ mapping (CA Training mode is enabled with MR48)

	CA4	CA9
Rising Edge	DQ0	DQ8
Falling Edge	DQ1	DQ9

Notes:

1. Other DQs must have valid output (either HIGH or LOW)

Mode Register Write - WR Leveling Mode


In order to provide for improved signal integrity performance, the LPDDR3 SDRAM provides a write leveling feature to compensate for timing skew, affecting timing parameters such as tDQSS, tDSS, and tDSH.

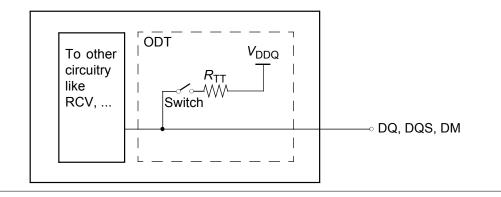
The memory controller uses the write leveling feature to receive feedback from the SDRAM allowing it to adjust the clock to data strobe signal relationship for each DQS/DQS signal pair. The memory controller performing the leveling must have adjustable delay setting on DQS/DQS signal pair to align the rising edge of DQS signals with that of the clock signal at the DRAM pin. The DRAM asynchronously feeds back CLK, sampled with the rising edge of DQS signals. The controller repeatedly delays DQS signals until a transition from 0 to 1 is detected. The DQS signals delay established through this exercise ensures the tDQSS specification can be met.

All DQS signals may have to be leveled independantly. During Write Leveling operations each DQS signal latches the clock with a rising strobe edge and drives the result on all DQ[n] of its respective byte.

The LPDDR3 SDRAM enters into write leveling mode when mode register MR2[7] is set HIGH. When entering write leveling mode, the state of the DQ pins is undefined. During write leveling mode, only NOP commands are allowed, or MRW command to exit write leveling operation. Upon completion of the write leveling operation, the DRAM exits from write leveling mode when MR2[7] is reset LOW.

The controller will drive DQS_t LOW and DQS_c HIGH after a delay of tWLDQSEN. After time tWLMRD, the controller provides DQS signal input which is used by the DRAM to sample the clock signal driven from the controller. The delay time tWLMRD(max) is controller dependent. The DRAM samples the clock input with the rising edge of DQS and provides asynchronous feedback on all the DQ bits after time tWLO. The controller samples this information and either increment or decrement the DQS and/or DQS delay settings and launches the next DQS/DQS pulse. The sample time and trigger time is controller dependent. Once the following DQS/DQS transition is sampled, the controller locks the strobe delay settings, and write leveling is achieved for the device.

WR Leveling Timing



On-Die Termination

ODT (On-Die Termination) is a feature of the LPDDR3 SDRAM that allows the DRAM to turn on/off termination resistance for each DQ, DQS, DQS and DM via the ODT control pin. The ODT feature is designed to improve signal integrity of the memory channel by allowing the DRAM controller to independently turn on/off termination resistance for any or all DRAM devices. Unlike other command inputs, the ODT pin directly controls ODT operation and is not sampled by the clock.

The ODT feature is turned off and not supported in Self-Refresh and Deep Power Down modes. ODT operation can optionally be enabled during CKE Power Down via a mode register. Note that if ODT is enabled during Power Down mode VDDQ may not be turned off during Power Down. The DRAM will also disable termination during read operations.

A simple functional representation of the DRAM ODT feature is shown in below Figure.

The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other mode register control information. The value of RTT is determined by the settings of Mode Register bits. The ODT pin will be ignored if the Mode Register MR11 is programmed to disable ODT, in self-refresh, in deep power down, in CKE power down (mode register option) and during read operations.

ODT Mode Register

The ODT Mode is enabled if MR11 OP<1:0> are non zero. In this case, the value of RTT is determined by the settings of those bits. The ODT Mode is disabled if MR11 OP<1:0> are zero.

MR11 OP<2> determines whether ODT, if enabled through MR11 OP<1:0>, will operate during CKE power down.

Asynchronous ODT

The ODT feature is controlled asynchronously based on the status of the ODT pin, except ODT is off when:

-ODT is disabled through MR11 OP<1:0> -DRAM is performing a read operation (RD or MRR) -DRAM is in CKE Power Down and MR11 OP<2> is zero -DRAM is in Self-Refresh or Deep Power Down modes. -DRAM is in CA Training Mode.

In asynchronous ODT mode, the following timing parameters apply when ODT operation is controlled by the ODT pin: tODTon,min,max, tODToff,min,max.

Minimum RTT turn-on time (tODTon,min) is the point in time when the device termination circuit leaves high impedance state and ODT resistance begins to turn on. Maximum RTT turn on time (tODTon,max) is the point in time when the ODT resistance is fully on. tODTon,min and tODTon,max are measured from ODT pin high.

Minimum RTT turn-off time (tODToff,min) is the point in time when the device termination circuit starts to turn off the ODT

resistance. Maximum ODT turn off time (tODToff,max) is the point in time when the on-die termination has reached high impedance. tODToff,min and tODToff,max are measured from ODT pin low.

ODT During Read Operations (RD or MRR)

During read operations, LPDDR3 SDRAM will disable termination and disable ODT control through the ODT pin. After read operations are completed, ODT control is resumed through the ODT pin (if ODT Mode is enabled).

ODT During Power Down

When MR11 OP<2> is zero, termination control through the ODT pin will be disabled when the DRAM enters CKE power down. After a power down command is registered, termination will be disabled within a time window specified by tODTd,min,max. After a power down exit command is registered, termination will be enabled within a time window specified by tODTe,min,max.

Minimum RTT disable time (tODTd,min) is the point in time when the device termination circuit will no longer be controlled by the ODT pin. Maximum ODT disable time (tODTd,max) is the point in time when the on-die termination will be in high impedance.

Minimum RTT enable time (tODTe,min) is the point in time when the device termination circuit will no longer be in high impedance. The ODT pin shall control the device termination circuit after maximum ODT enable time (tODTe,max) is satisfied.

When MR11 OP<2> is enabled and MR11 OP<1:0> are non zero, ODT operation is supported during CKE power down with ODT control through the ODT pin.

ODT During Self Refresh

LPDDR3 SDRAM disables the ODT function during self refresh. After a self refresh command is registered, termination will be disabled within a time window specified by tODTd,min,max. After a self refresh exit command is registered, termination will be enabled within a time window specified by tODTe,min,max.

ODT During Deep Power Down

LPDDR3 SDRAM disables the ODT function during deep power down. After a deep power down command is registered, termination will be disabled within a time window specified by tODTd,min,max.

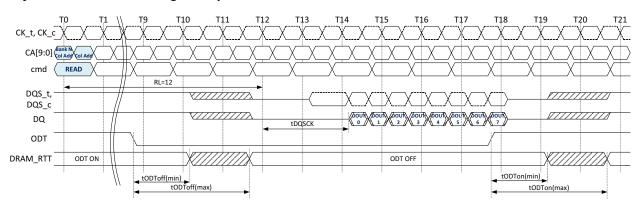
ODT During CA Training and Write Leveling

During CA Training Mode, LPDDR3 SDRAM will disable on-die termination and ignore the state of the ODT control pin. For ODT operation during Write Leveling mode, refer to below table for termination activation and deactivation for DQ and DQS/DQS.

DRAM Termination Function In Write Leveling Mode

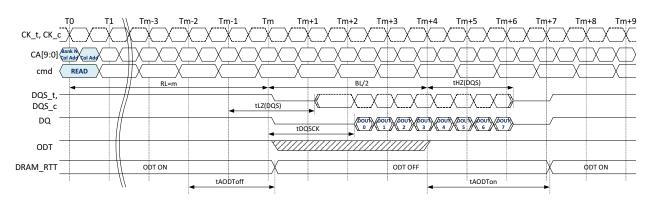
ODT pin	DQS/DQS termination	DQ termination	
de-asserted	OFF	OFF	
asserted	ON	OFF	

If ODT is enabled, the ODT pin must be high, in Write Leveling mode.

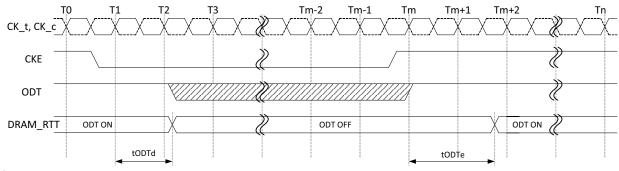


ODT States Truth Table

	Write	Read/DQ Cal	ZQ Cal	CA Training	Write Level
DQ Termination	Enabled	Disabled	Disabled	Disabled	Disabled
DQS Termination	Enabled	Disabled	Disabled	Disabled	Enabled


Notes:

1. ODT is enabled with MR11[1:0]=01b, 10b, or 11b and ODT pin HIGH. ODT is disabled with MR11[1:0]=00b or ODT pin LOW.



Asynchronous ODT Timing Example for RL = 12

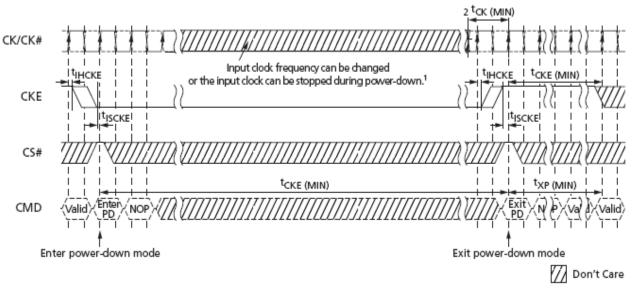
Automatic ODT Timing During READ Operation Example for RL = m

Notes:

1. Upon exit of Deep Power Down mode, a complete power-up initialization sequence is required.

Power Down

Power-down is entered synchronously when CKE is registered LOW and \overline{CS} is HIGH at the rising edge of clock. CKE must not go LOW while MRR, MRW, READ, or WRITE operations are in progress. CKE can go LOW while any other operations such as row activation, PRECHARGE, auto precharge, or REFRESH are in progress, but the power-down IDD specification will not be applied until such operations are complete.

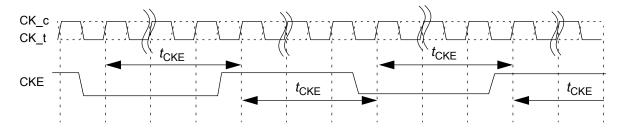

Entering power-down deactivates the input and output buffers, excluding CKE. To ensure that there is enough time to account for internal delay on the CKE signal path, two NOP commands are required after CKE is driven LOW, this timing period is defined as tCPDED. CKE LOW will result in deactivation of input receivers after tCPDED has expired. In power-down mode, CKE must be held LOW; all other input signals are "Don't Care." CKE LOW must be maintained until tCKE,min is satisfied. VREFCA must be maintained at a valid level during power-down.

VDDQ can be turned off during power-down. If VDDQ is turned off, VREFDQ must also be turned off. Prior to exiting power-down, both VDDQ and VREFDQ must be within their respective minimum/maximum operating ranges.

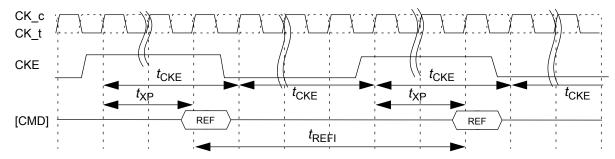
No refresh operations are performed in power-down mode. The maximum duration in power-down mode is only limited by the refresh requirements outlined in the Refresh command section.

The power-down state is exited when CKE is registered HIGH. The controller must drive CS_n HIGH in conjunction with CKE HIGH when exiting the power-down state. CKE HIGH must be maintained until tCKE,min is satisfied. A valid, executable command can be applied with power-down exit latency tXP after CKE goes HIGH. Power-down exit latency is defined in the AC timing parameter table.

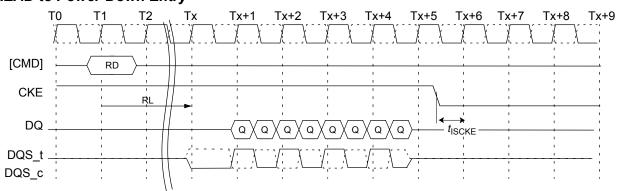
If power-down occurs when all banks are idle, this mode is referred to as idle power-down; if power-down occurs when there is a row active in any bank, this mode is referred to as active power-down.


Basic Power-Down entry and exit timing

Notes:


1. Input clock frequency can be changed or the input clock can be stopped or floated during power-down, provided that upon exiting power-down, the clock is stable and within specified limits for a minimum of 2 clock cycles prior to powerdown exit and the clock frequency is between the minimum and maximum specified frequency for the speed grade in use.

CKE-Intensive Environment

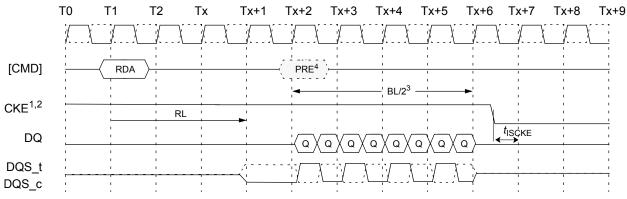


REFRESH-to-REFRESH Timing in CKE-Intensive Environments

Notes:

1. The pattern shown can repeat over an extended period of time. With this pattern, all AC and DC timing and voltage specifications with temperature and voltage drift are ensured.

READ to Power-Down Entry

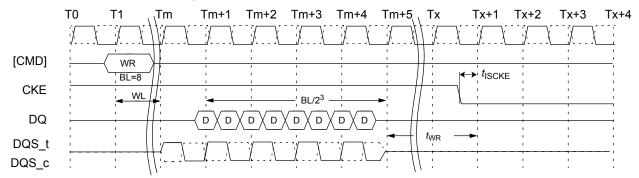

Notes:

1. CKE must be held HIGH until the end of the burst operation.

2. CKE can be registered LOW at RL + RU(tDQSCK(MAX)/tCK) + BL/2 + 1 clock cycles after the clock on which the READ command is registered.

READ with Auto Precharge to Power-Down Entry

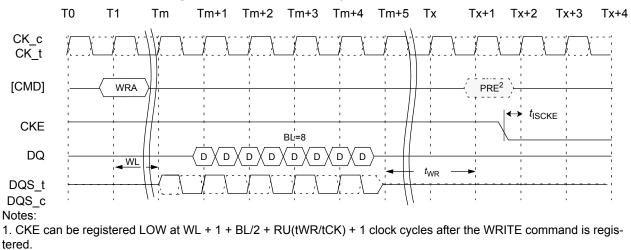
Notes:


1. CKE must be held HIGH until the end of the burst operation.

2. CKE can be registered LOW at RL + RU(tDQSCK/tCK)+ BL/2 + 1 clock cycles after the clock on which the READ command is registered.

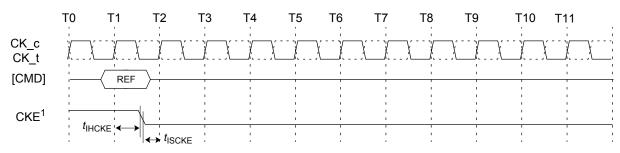
3. BL/2 with tRTP = 7.5ns and tRAS(MIN) is satisfied.

4. Start internal PRECHARGE.

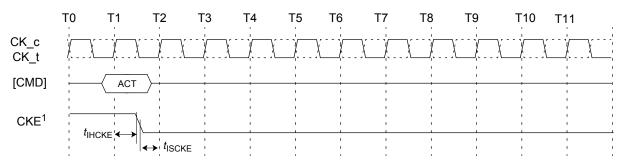

WRITE to Power-Down Entry

Notes:

1. CKE can be registered LOW at WL + 1 + BL/2 + RU(tWR/tCK) clock cycles after the clock on which the WRITE command is registered.

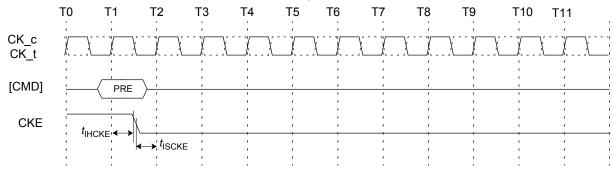

WRITE with Auto Precharge to Power-Down Entry

2. Start internal PRECHARGE.


REFRESH Command to Power-Down Entry

Notes:

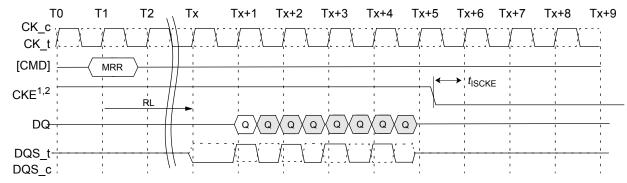
1. CKE can go LOW tIHCKE after the clock on which the REFRESH command is registered.


ACTIVATE Command to Power-Down Entry

Notes:

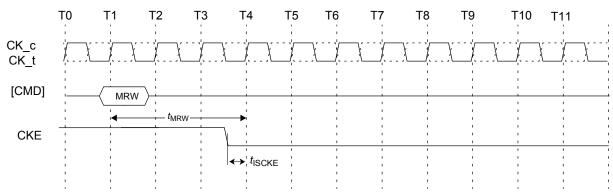
1. CKE can go LOW at tIHCKE after the clock on which the ACTIVATE command is registered.

PRECHARGE Command to Power-Down Entry



Notes:

1. CKE can go LOW tIHCKE after the clock on which the PRECHARGE command is registered.


MRR to Power-Down Entry

Notes:

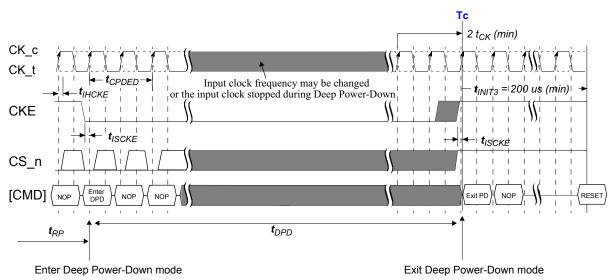
1. CKE can be registered LOW RL + RU(tDQSCK/tCK)+ BL/2 + 1 clock cycles after the clock on which the MRR command is registered.

2. CKE should be held high until the end of the burst operation.

MRW to Power-Down Entry

Notes:

1. CKE can be registered LOW tMRW after the clock on which the MRW command is registered.


Deep Power Down

Deep Power-Down is entered when CKE is registered LOW with \overline{CS} LOW, CA0 HIGH, CA1 HIGH, and CA2 LOW at the rising edge of clock. All banks must be in idle state with no activity on the data bus prior to entering the Deep Power Down mode. During Deep Power-Down, CKE must be held LOW. The contents of the SDRAM will be lost upon entry into Deep Power-Down mode.

In Deep Power-Down mode, all input buffers except CKE, all output buffers, and the power supply to internal circuitry may be disabled within the SDRAM. To ensure that there is enough time to account for internal delay on the CKE signal path, two NOP commands are required after CKE is driven LOW, this timing period is defined as tCPDED. CKE LOW will result in deactivation of command and address receivers after tCPDED has expired. All power supplies must be within specified limits prior to exiting Deep Power-Down. VrefDQ and VrefCA may be at any level within minimum and maximum levels. However prior to exiting Deep Power-Down, Vref must be within specified limits.

The contents of the SDRAM may be lost upon entry into Deep Power-Down mode.

The Deep Power-Down state is exited when CKE is registered HIGH, while meeting tISCKE with a stable clock input. The SDRAM must be fully re-initialized as described in the power up initialization Sequence. The SDRAM is ready for normal operation after the initialization sequence is completed. For the description of ODT operation and specifications during DPD entry and exit, see "ODT During Deep Power Down".

Notes:

1. Initialization sequence may start at any time after Tc.

2. tINIT3, and Tc refer to timings in the LPDDR3 initialization sequence.

3. Input clock frequency may be changed or the input clock can be stopped or floated during deep power-down, provided that upon exiting deep power-down, the clock is stable and within specified limits for a minimum of 2 clock cycles prior to deep power-down exit and the clock frequency is between the minimum and maximum frequency for the particular speed grade.

Input clock stop and frequency change

LPDDR3 SDRAMs support input clock frequency change during CKE LOW under the following conditions:

- Tck(abs)min is met for each clock cycle
- Refresh requirement apply during clock frequency change
- During clock frequency change, only REFab or REFpb commands may be executing
- Any ACTIVATE or PRECHARGE commands have completed prior to changing the frequency
- Related timing conditions, Trcd and Trp, have been met prior to changing the frequency
- The initial clock frequency must be maintained for a minimum of 2 clock cycles after CKE goes LOW
- The clock satisfies Tch(abs) and Tcl(abs) for a minimum of two clock cycles prior to CKE going HIGH.

After the input clock frequency is changed and CKE is held HIGH, additional MRW commands may be required to set the WR, RL, etc. These settings may need to be adjusted to meet minimum timing requirements at the target clock frequency.

LPDDR3 devices support clock stop during CKE LOW under the following conditions:

- CK is held LOW and CK is held HIGH during clock stop
- Refresh requirements are met
- Only REFab or REFpb commands can be in process
- Any ACTIVATE or PRECHARGE commands have completed prior to changing the frequency
- Related timing conditions, Trcd and Trp, have been met prior to changing the frequency
- The initial clock frequency must be maintained for a minimum of 2 clock cycles after CKE goes LOW
- The clock satisfies Tch(abs) and Tcl(abs) for a minimum of two clock cycles prior to CKE going HIGH

LPDDR3 devices support input clock frequency change during CKE HIGH under the following conditions:

- Tck(abs)min is met for each clock cycle
- Refresh requirement apply during clock frequency change

- Any Activate, Read, Write, Precharge, Mode Register Write or Mode Register Read commands must have executed to completion including any associated data bursts prior to changing the frequency

- The related timing conditions (Trcd, Twr, Twra, Trp,Tmrw,Tmrr etc) have been met prior to changing the frequency
- CS shall be held HIGH during clock frequency change
- During clock frequency change, only REFab or REFpb commands may be executing

- The LPDDR3 device is ready for normal operation after the clock satisfies Tch(abs) and Tcl(abs) for a minimum of 2Tck+Txp

After the input clock frequency is changed and CKE is held HIGH, additional MRW commands may be required to set the WR, RL, etc. These settings may need to be adjusted to meet minimum timing requirements at the target clock frequency.

LPDDR3 devices support clock stop during CKE HIGH under the following conditions:

- CK is held LOW and CK is held HIGH during clock stop
- CS shall be held HIGH during clock stop
- Refresh requirements are met
- Only REFab or REFpb commands can be in process

- Any Activate, Read, Write, Precharge, Mode Register Write or Mode Register Read commands must have executed to completion including any associated data bursts prior to stopping the clock

- The related timing conditions (Trcd, Twr, Twra, Trp,Tmrw,Tmrr etc) have been met prior to stopping the clock

- The LPDD3 device is ready for normal operation after the clock is restarted and satisfies Tch(abs) and Tcl(abs) for a minimum of 2Tck+Txp

No Operation Command

The purpose of the No Operation command (NOP) is to prevent the device from registering any unwanted command between operations. Only when the CKE level is constant for clock cycle N-1 and clock cycle N, a NOP command may be issued at clock cycle N. A NOP command has two possible encodings:

- 1. $\overline{\text{CS}}$ HIGH at the clock rising edge N.
- 2. CS LOW and CA0, CA1, CA2 HIGH at the clock rising edge N.

The No Operation command will not terminate a previous operation that is still executing, such as a burst read or write cycle.

Absolute Maximum DC Ratings

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Symbol	Parameter	Min	Max	Units	Note
VDD1	Voltage on VDD1 pin relative to Vss	-0.4	2.3	V	1
VDD2	Voltage on VDD2 pin relative to Vss	-0.4	1.6	V	1
VDDCA	Voltage on VDDCA pin relative to Vss	-0.4	1.6	V	1,2
VDDQ	Voltage on VDDQ pin relative to Vss	-0.4	1.6	V	1,3
Vin, Vout	Voltage on any pin relative to Vss	-0.4	1.6	V	
Tstg	Storage Temperature (plastic)	-55	125	°C	4

Notes :

1. See "Power-Ramp" for relationships between power supplies.

2. VREFCA =< 0.6 x VDDCA; however, VREFCA may be => VDDCA provided that VREFCA =< 300mV.

3. VREFDQ =< 0.6 x VDDQ; however, VREFDQ may be => VDDQ provided that VREFDQ =< 300mV.

4. Storage Temperature is the case surface temperature on the center/top side of the LPDDR3 device. For the measurement conditions, please refer to JESD51-2 standard.

AC/DC Operating Conditions

Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the LPDDR3 device must be powered down and then restarted through the specialized initialization sequence before normal operation can continue.

Recommended DC Operating Conditions

Symbol	Parameter	Rating				
Symbol			Тур.	Max.	Units	Notes
VDD1	Core supply voltage 1	1.70	1.80	1.95	V	
VDD2	Core supply voltage 2	1.14	1.20	1.30	V	
VDDCA	Input supply voltage	1.14	1.20	1.30	V	
VDDQ	I/O supply voltage	1.14	1.20	1.30	V	

Notes :

 VDD1 uses significantly less current than VDD2.
 The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 1MHz at the DRAM package ball.

Input Leakage Current

Symbol	parameter	Min	Мах	Units	Notes
ΙL	Input Leakage current	-2	2	uA	1,2
I _{VREF}	VREF supply leakage current	-1	1	uA	3,4

Notes :

1. For CA, CKE, CS, CK, CK. Any input 0V =< VIN =< VDDCA (All other pins not under test = 0V)

Although DM is for input only, the DM leakage shall match the DQ and DQS/DQS output leakage specification.

3. The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal.

4. VREFDQ = VDDQ/2 or VREFCA = VDDCA/2. (All other pins not under test = 0V)

Operating Temperature Condition

Symbol	Parameter	Rating	Units	Notes
T _{OPER}	Operating case temperature(Commercial)	-25 to +85	°C	

Notes :

1. Operating Temperature is the case surface temperature on the center/top side of the LPDDR3 device. For the measurement conditions, please refer to JESD51-2 standard.

2. Some applications require operation of LPDDR3 in the maximum temperature conditions in the Elevated Temperature Range between 85°C and 105°C case temperature. For LPDDR3 devices, derating may be neccessary to operate in this range. See MR4.

3. Either the device case temperature rating or the temperature sensor may be used to set an appropriate refresh rate, determine the need for AC timing de-rating and/or monitor the operating temperature. When using the temperature sensor, the actual device case temperature may be higher than the TOPER rating that applies for the Standard or Extended Temperature Ranges. For example, TCASE may be above 85°C when the temperature sensor indicates a temperature of less than 85°C.

AC and DC Input Measurement Levels

Symbol	Parameter	1333			•• •
Symbol	i ulullotoi	Min	Max	Unit	Notes
VIHCA(AC)	AC input logic high	VREF + 0.150V	Note2	V	1,2
VILCA(AC)	AC input logic Low	Note2	VREF - 0.150V	V	1,2
VIHCA(DC)	DC input logic high	VREF + 0.100V	VDDCA	V	1
VILCA(DC)	DC input logic Low	VSSCA	VREF - 0.100V	V	1
VREFCA(DC)	$\frac{\text{Reference Voltage for CA and}}{\text{CS inputs}}$	0.49 x VDDCA	0.51 x VDDCA	V	3,4

Single-Ended AC and DC Input Levels for CA and \overline{CS} Signals

Notes :

1. For CA and \overline{CS} input only pins. VREF = VREFCA(DC).

2. See Overshoot and Undershoot Specifications section.

3. The ac peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than +/-1% VDDCA

(for reference: approx. +/- 12 mV).

4. For reference : approx. VDD/2 ±12 mV.

Single-Ended AC and DC Input Levels for CKE

Symbol	Parameter	Min.	Max.	Units	Notes
VIHCKE	CKE input high level	0.65 x VDDCA	-	V	1
VILCKE	CKE input low level	-	0.35 x VDDCA	V	1

Notes :

1. See Overshoot and Undershoot Specifications section.

Single-Ended AC and DC Input Levels for DQ and DM Signals

Symbol	Parameter	1333			
Gymbol	, arainotor	Min	Мах	Unit	Notes
VIHDQ(AC)	AC input logic high	VREF + 0.150V	Note2	V	1,2,5
VILDQ(AC)	AC input logic Low	Note2	VREF - 0.150V	V	1,2,5
VIHDQ(DC)	DC input logic high	VREF + 0.100V	VDDQ	V	1
VILDQ(DC)	DC input logic Low	VSSQ	VREF - 0.100V	V	1

VREFDQ(DC) (DQ ODT dis- abled)	Reference Voltage for DQ and DM inputs	0.49 x VDDQ	0.51 x VDDQ	V	3,4
VREFDQ(DC) (DQ ODT en- abled)	U I	VODTR/2 - 0.01 x VDDQ	VODTR/2 + 0.01 x VDDQ	V	3,5,6

Notes :

1. For DQ input only pins. VREF = VREFDQ(DC).

2. See Overshoot and Undershoot Specifications section.

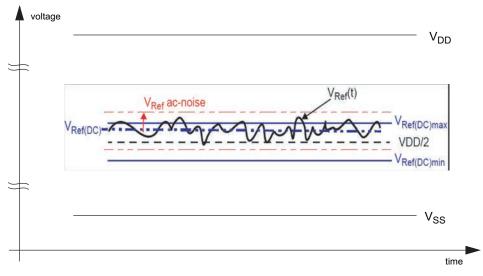
3. The ac peak noise on VREFDQ may not allow VREFDQ to deviate from VREFDQ(DC) by more than +/-1% VDDDQ (for reference: approx. +/- 12 mV).

4. For reference : approx. VDD/2 ±12 mV.

5. For reference: approx. VODTR/2 +/- 12 mV.

6. The nominal mode register programmed value for RODT and the nominal controller output impedance RON are used for the calculation of VODTR. For testing purposes a controller RON value of 50 ohm is used.

2RON + RTT


VODTR = ----- X VDDQ

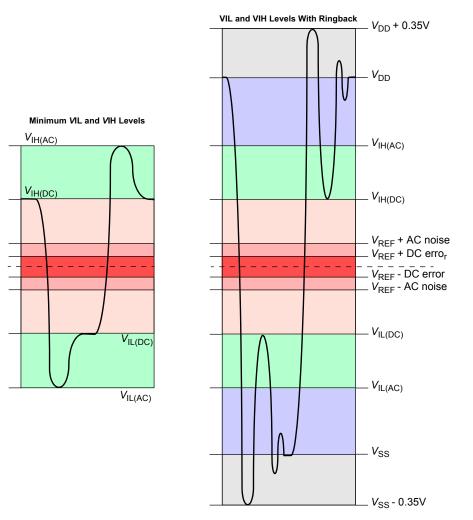
RON + RTT

VREF Tolerances

The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated below. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VDD stands for VDDCA for VRefCA and VDDQ for VRefDQ. VRef(DC) is the linear average of VRef(t) over a very long period of time (e.g. 1 sec) and is specified as a fraction of the linear average of VDDQ or VDDCA also over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements. Furthermore VRef(t) may temporarily deviate from VRef(DC) by no more than +/- 1% VDD. VRef(t) cannot track noise on VDDQ or VDDCA if this would send VRef outside these specifications.

VREF(DC) tolerance and VREF AC-Noise limits

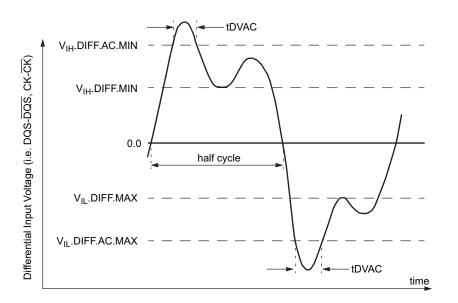
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef. "VRef" shall be understood as VRef(DC) above.


This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals.

This also clarifies that the LPDDR3 setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD) are included in LPDDR3 timings and their associated deratings.

Input Signals

LPDDR3-1333 Input Signal


Notes:

- 1. Numbers reflect typical values.
- For CA[9:0], CK, CK, and CS, VDD stands for VDDCA. For DQ, DM, DQS, DQS, and ODT, VDD stands for VDDQ.
 For CA[9:0], CK, CK, and CS, VSS stands for VSSCA. For DQ, DM, DQS, DQS, and ODT, VSS stands for VSSQ.

AC and DC Logic Input Levels for Differential Signals

Differential signals definition

Definition of differential ac-swing and "time above ac level" tDVAC

Differential swing requirement for clock (CK - \overline{CK}) and strobe (DQS - \overline{DQS})

Symbol	Parameter	Va			
Cymbol	i ulullotoi	Min	Мах	Unit	Notes
VIHDIFF(DC)	Differential input high	2 x (VIH(dc) - VREF)	Note 3	V	1
VILDIFF(DC)	Differential input low	Note 3	2 x (VIL(dc) - Vref)	V	1
VIHDIFF(AC)	Differential input high	2 x (VIH(ac) - VREF)	Note 3	V	2
VILDIFF(AC)	Differential input low	Note 3	2 x (VIL(ac) - Vref)	V	2

Differential AC and DC Input Levels

Notes :

^{1.} Used to define a differential signal slew-rate. For CK - CK use VIH/VIL(DC) of address/command and VREFCA; for strobes (DQS, DQS) use VIH/VIL(DC) of DQs and VREFDQ; if a reduced dc-high or dc-low level is used for a signal group, then the reduced level applies also here.

2. For CK - CK use VIH/VIL(AC) of CA and VREFCA; for DQS - DQS, use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.

3. These values are not defined, however the single-ended signals CK, CK, DQS, and DQS must be within the respective limits (VIH(DC)max, VIL(DC)min) for single-ended signals and must comply with the specified limitations for overshoot and undershoot.

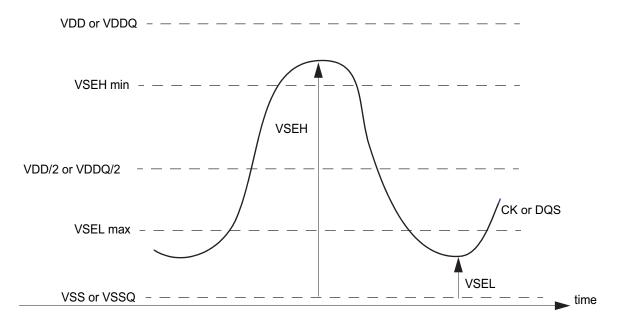
4. For CK and \overline{CK} , VRef = VRefCA(DC). For DQS and \overline{DQS} , VRef = VRefDQ(DC).

Allowed time before ringback (tDVAC) for DQS - DQS

Slew Rate [V/ns]	tDVAC [ps] @ VIH/Ldiff(AC) = 300mV 1333Mbps		
	Min	Мах	
> 8.0	48	-	
8.0	48	-	
7.0	46	-	
6.0	43	-	
5.0	40	-	
4.0	35	-	
3.0	27	-	
< 3.0	27	-	

Allowed time before ringback (tDVAC) for CK - CK

Slew Rate [V/ns]	tDVAC [ps] @ VIH/Ldiff(AC) = 300mV 1333Mbps		
	Min	Max	
> 8.0	48	-	
8.0	48	-	
7.0	46	-	
6.0	43	-	
5.0	40	-	
4.0	35	-	
3.0	27	-	
< 3.0	27	-	


Single-ended requirements for differential signals

Each individual component of a differential signal (CK, DQS, \overline{CK} , \overline{DQS}) has also to comply with certain requirements for single-ended signals.

CK and CK shall meet VSEH(AC) min / VSEL(AC) max in every half-cycle.

DQS, DQS shall meet VSEH(AC) min / VSEL(AC) max in every half-cycle proceeding and following a valid transition.

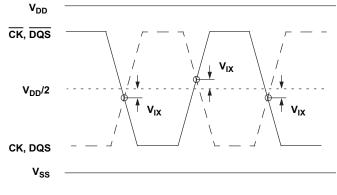
Note that the applicable AC-levels for CA and DQ's are different per speed-bin.

Single-ended requirement for differential signals

Note that while CA and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDDQ/2 for DQS, DQS and VDDCA/2 for CK, CK; this is nominally the same. The transition of single-ended signals through the AC-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSEL(AC) max, VSEH(AC) min has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

Single-ended levels for CK, DQS, CK, DQS

Symbol	Parameter	Va	lue		
Symbol	randinotor	Min	Мах	Unit	Notes
	Single-ended high-level for strobes	(VDDQ/2) + 0.150	NOTE 3	V	1,2
VSEH(AC150)	Single-ended high-level for CK, CK	(VDDCA/2) + 0.150	NOTE 3	V	1,2
VSEL(AC150)	Single-ended low-level for strobes	NOTE 3	(VDDQ/2) - 0.150	V	1,2
	Single-ended low-level for CK, CK	NOTE 3	(VDDCA/2) - 0.150	V	1,2
	Single-ended high-level for strobes	(VDDQ/2) + 0.135	NOTE 3	V	1,2
VSEH(AC135)	Single-ended high-level for CK, CK	(VDDCA/2) + 0.135	NOTE 3	V	1,2
VSEL(AC135)	Single-ended low-level for strobes	NOTE 3	(VDDQ/2) - 0.135	V	1,2
	Single-ended <u>low</u> -level for CK, CK	NOTE 3	(VDDCA/2) - 0.135	V	1,2


Notes :

- 1. For CK, CK use VSEH/VSEL(AC) of CA; for strobes (DQS0, DQS0, DQS1, DQS1, DQS2, DQS2, DQS3, DQS3) use VIH/VIL(AC) of DQs.
- 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VSEH(AC)/VSEL(AC) for CA is based on VREFCA; if a reduced AC-high or AC-low level is used for a signal group, then the reduced level applies also here.
- 3. These values are not defined, however the single-ended components of differential signals CK, CK, DQS0, DQS0, DQS1, DQS1, DQS2, DQS2, DQS3, DQS3 need to be within the respective limits (VIH(DC) max, VIL(DC) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot specifications".

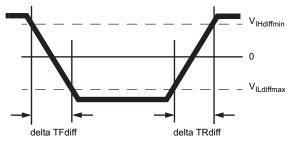
Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS.

VIX Definition

Cross point voltage for differential input signals (CK, DQS)

Symbol	Parameter		Max.	Units	Notes
VIXCA	Differential Input Cross Point Voltage relative to VDDCA/2 for CK, \overline{CK}	-120	120	mV	1,2
VIXDQ	Differential Input Cross Point Voltage relative to VDDDQ/2 for DQS, DQS	-120	120	mV	1,2


Notes :

1. The typical value of VIX(AC) is expected to be about 0.5 x VDD of the transmitting device, and VIX(AC) is expected to track variations in VDD. VIX(AC) indicates the voltage at which differential input signals must cross. 2. For CK and CK, VREF = VREFCA(DC). For DQS and DQS, VREF = VREFDQ(DC).

Differential input slew rate definition

Description	Meas	sured	Defined by	
Description	From	То	Defined by	
Differential input slew rate for rising edge (CK- $\overline{\text{CK}}$ and DQS- $\overline{\text{DQS}}$)	VILdiff (max)	VIHdiff (min)	<u>VIHdiff (min) - VILdiff (max)</u> Delta TRdiff	
Differential input slew rate for falling edge ($CK-\overline{CK}$ and $DQS-\overline{DQS}$)	VIHdiff (min)	VILdiff (max)	<u>VIHdiff (min) - VILdiff (max)</u> Delta TFdiff	

Notes : The differential signal (i.e. CK - \overline{CK} and DQS - \overline{DQS}) must be linear between these thresholds.

Differential Input Slew Rate definition for DQS, DQS, and CK, CK

AC and DC Output Measurement Levels

Symbol	Parameter	Value	Units	Notes
VOH(DC)	DC output high measurement level (for IV curve linearity)	0.9 x VDDQ	V	1
VOL(DC) ODT disabled	DC output mid measurement level (for IV curve linearity)	0.1 x VDDQ	V	2
VOL(DC) ODT enabled	DC output mid measurement level (for IV curve linearity)	VDDQ x [0.1 + 0.9 x (RON / (RTT + RON))]	V	3
VOH(AC)	AC output high measurement level (for output SR)	VREFDQ+0.12	V	
VOL(AC)	AC output low measurement level (for output SR)	VREFDQ-0.12	V	
I _{OZ}	Output Leakage current (DQ, DM, DQS, DQS)	-5 (min)	uA	
(DQ, DQS, DQS are disabled; 0V =< VOUT =< VDDQ)		5 (max)	uA	
MM _{PUPD}	Delta RON between pull-up and pull-down for DQ/DM	-15 (min)	%	
		15 (max)	%	

Notes :

1. IOH = -0.1mA.

2. IOL = -0.1mA.

3. The min value is derived when using RTT, min and RON,max (+/- 30% uncalibrated, +/-15% calibrated).

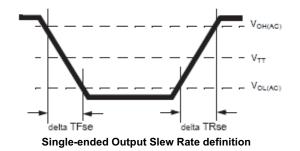
Differential AC & DC Output Levels

Symbol	Parameter	Value	Units	Notes
VOHdiff(AC)	AC differential output high measurement level (for output SR)	+0.2 x VDDQ	V	
VOLdiff(AC)	AC differential output low measurement level (for output SR)	-0.2 x VDDQ	V	

Notes :

1. IOH = -0.1 mA.

2. IOL = -0.1mA.


Single-ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals.

Description	Mea	sured	Defined by
Description	From	То	Defined by
Single ended output slew rate for rising edge	VOL(AC)	VOH(AC)	<u>VOH(AC)-VOL(AC)</u> Delta TRse
Single ended output slew rate for falling edge	VOH(AC)	VOL(AC)	<u>VOH(AC)-VOL(AC)</u> Delta TRse

Notes : Output slew rate is verified by design and characterization, and may not be subject to production test.

Parameter		Va	lue	Units
Falameter	Symbol	Min ¹	Max ²	Units
Single ended output slew rate (RON = 40 Ω +/- 30%)	SRQse	1.5	4.0	V/ns

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output)

se : Single-ended Signals

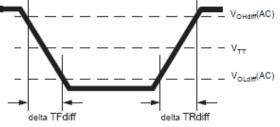
Notes :

1. Measured with output reference load.

2. The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation.

3. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

4. Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.



Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOH-diff(AC) for differential signals.

Description	Measured		Defined by	
Description	From	То	Defined by	
Differential output slew rate for rising edge	VOLdiff(AC)	VOHdiff(AC)	VOHdiff(AC)-VOLdiff(AC) Delta TRdiff	
Differential output slew rate for falling edge	VOHdiff(AC)	VOLdiff(AC)	VOHdiff(AC)-VOLdiff(AC)) Delta TFdiff	

Notes : Output slew rate is verified by design and characterization, and may not be subject to production test.

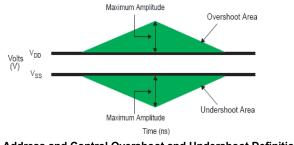
Differential Output Slew Rate definition

Parameter		Va	Units		
Falameter	Symbol	Min	Мах	Units	
Single ended output slew rate (RON = 40Ω +/- 30%)	SRQdiff	3.0	8.0	V/ns	
Output slew-rate matching Ratio (Pull-up to Pull-down)		0.7	1.4		

Description : SR : Slew Rate

Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals

Notes :


- 1. Measured with output reference load.
- 2. he output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).
- 3. Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.

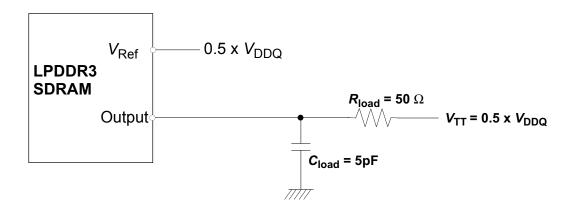
Overshoot and Undershoot Specification

AC Overshoot/Undershoot specifications

Parameter		1333	Unit
Maximum peak amplitude allowed for overshoot area	Max	0.35	V
Maximum peak amplitude allowed for undershoot area	Max	0.35	V
Maximum overshoot area above VDD	Max	0.10	V-ns
Maximum undershoot area below VSS	Max	0.10	V-ns

Address and Control Overshoot and Undershoot Definition

Notes:


- 1. For CA0-9, CK, <u>CK</u>, <u>CS</u>, and CKE, VDD stands for VDDCA. For DQ, DM, DQS, and <u>DQS</u>, VDD stands for VDDQ. 2. For CA0-9, CK, <u>CK</u>, <u>CS</u>, and CKE, VSS stands for VSSCA. For DQ, DM, DQS, and <u>DQS</u>, VSS stands for VSSQ.
- 3. Absolute maximum requirements apply.
- 4. Maximum peak amplitude values are referenced from actual VDD and VSS values.
- 5. Maximum area values are referenced from maximum operating VDD and VSS values.

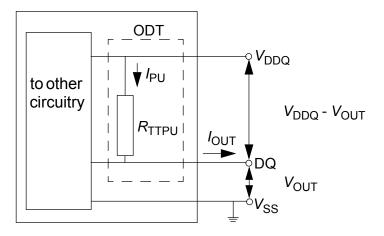
Output buffer characteristics

HSUL_12 Driver Output Timing Reference Load

These "Timing Reference Loads" are not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

Note:

1. All output timing parameter values (like tDQSCK, tDQSQ, tQHS, tHZ, tRPRE etc.) are reported with respect to this reference load. This reference load is also used to report slew rate.



ODT Levels and I-V Characteristics

On-Die Termination effective resistance, RTT, is defined by mode register MR11[1:0]. ODT is applied to the DQ, DM, and DQS/DQS pins. A functional representation of the on-die termination is shown in below.

RTT is defined by the following formula:

RTTPU = (VDDQ - VOut) / | IOut |

ODT DC Electrical Characteristics, assuming RZQ = 240 ohm after proper ZQ calibration

		IOUT			
RTT (ohm)	VOUT (V)	Min (mA)	Max (mA)		
RZQ/1	0.6	-2.17	-2.94		
RZQ/2	0.6	-4.34	-5.88		
RZQ/4	0.6	-8.68	-11.76		

Input/Output Capacitance

Parameter	Symbol	Min	Мах	Units	NOTE
Input cap <u>aci</u> tance (CK and CK)	ССК	0.5	1.2	pF	1,2
Input cap <u>aci</u> tance delta (CK and CK)	CDCK	0	0.15	pF	1,2,3
Input capacitance (All other input-only pins)	CI	0.5	1.1	pF	1,2,4
Input capacitance delta (All other input-only pins)	CDI	-0.2	0.2	pF	1,2,5
Input/output <u>cap</u> acitance (DQ, DQS, DQS, DM)	CIO	1.0	1.8	pF	1,2,6,7
Input/outpu <u>t ca</u> pacitance delta (DQS and DQS)	CDDQS	0	0.2	pF	1,2,7,8
Input/output capacitance delta (DQ, DM)	CDIO	-0.25	0.25	pF	1,2,7,9
Input/output capacitance: ZQ	CZQ	0	2.0	pF	1,2

(TOPER; VDDQ = 1.14-1.3V; VDDCA = 1.14-1.3V; VDD1 = 1.7-1.95V, VDD2 = 1.14-1.3V).

Notes :

1. This parameter applies to die device only (does not include package capacitance).

2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer) with VDD1, VDD2, VDDQ, VSS, VSSCA, VSSQ applied and all other pins floating.

3. Absolute value of CCK-CCK

4. CI applies to \overline{CS} , CKE, CA0-CA9.

5. CDI = CI - 0.5 * (CCK + $C\overline{CK}$)

6. DM loading matches DQ and DQS.

7. MR3 I/O configuration DS OP3-<u>OP0</u> = 0001B (34.3 Ohm typical).

- 8. Absolute value of CDQS and CDQS.
- 9. CDIO = CIO 0.5 * (CDQS + CDQS) in byte-lane.

IDD Specification

(VDD2, VDDQ, VDDCA = 1.14~1.30V, VDD1 = 1.70~1.95V)

Conditions	Symbol	Power Supply	1333	Unit
Operating One Bank Active-Precharge Current:tCK = tCK(avg)min; tRC = tRCmin;CKE is HIGH;CS is HIGH between valid commands;CA bus inputs are SWITCHING;Data bus inputs are STABLEODT disabled	IDD0 ₁ IDD0 ₂ IDD0 _{IN}	VDD1 VDD2 VDDCA,VDDQ	8 35 7	mA
Idle power-down standby current: tCK = tCK(avg)min; CKE is LOW; CS is HIGH; All banks/RBs idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disabled	IDD2P ₁ IDD2P ₂ IDD2P _{IN}	VDD1 VDD2 VDDCA,VDDQ	0.5 2 0.2	mA
Idle power-down standby current with clock stop: CK =LOW, CK =HIGH; CKE is LOW; CS is HIGH; All banks/RBs idle; CA bus inputs are STABLE; Data bus inputs are STABLE ODT disabled	IDD2PS ₁ IDD2PS ₂ IDD2PS _{IN}	VDD1 VDD2 VDDCA,VDDQ	0.5 2 0.2	mA
Idle non power-down standby current: tCK = tCK(avg)min; CKE is HIGH; CS is HIGH; All banks/RBs idle; CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disabled	IDD2N ₁ IDD2N ₂ IDD2N _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 5 7	mA
Idle non power-down standby current with clock stop: CK_t =LOW, CK_c =HIGH; CKE is HIGH; CS is HIGH; All banks/RBs idle; CA bus inputs are STABLE; Data bus inputs are STABLE ODT disabled	IDD2NS ₁ IDD2NS ₂ IDD2NS _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 5 7	mA

Conditions	Symbol	Power Supply	1333	Unit
Active power-down standby current: tCK = tCK(avg)min; CKE is LOW; CS is HIGH; One bank/RB active; CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disabled	IDD3P ₁ IDD3P ₂ IDD3P _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 6 0.2	mA
Active power-down standby current with clock stop: CK=LOW, CK=HIGH; CKE is LOW; CS is HIGH; One bank/RB active; CA bus inputs are STABLE; Data bus inputs are STABLE ODT disabled	IDD3PS ₁ IDD3PS ₂ IDD3PS _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 6 0.2	mA
Active non power-down standby current: tCK = tCK(avg)min; CKE is HIGH; CS is HIGH; One bank/RB active; CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disabled	IDD3N ₁ IDD3N ₂ IDD3N _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 8 7	mA
Active non power-down standby current with clock stop: CK=LOW, CK=HIGH; CKE is HIGH; CS is HIGH; One bank/RB active; CA bus inputs are STABLE; Data bus inputs are STABLE ODT disabled	IDD3NS ₁ IDD3NS ₂ IDD3NS _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 6 7	mA
Operating burst read current:tCK = tCK(avg)min;CS is HIGH between valid commands;One bank/RB active;BL = 4; RL = RLmin;CA bus inputs are SWITCHING;50% data change each burst transferODT disabled	IDD4R ₁ IDD4R ₂ IDD4R _{IN} IDD4R _Q	VDD1 VDD2 VDDCA VDDQ	2 220 7 230	mA
Operating burst write current: tCK = tCK(avg)min; CS is HIGH between valid commands; One bank/RB active; BL = 4; WL = WLmin; CA bus inputs are SWITCHING; 50% data change each burst transfer ODT disabled	IDD4W ₁ IDD4W ₂ IDD4W _{IN}	VDD1 VDD2 VDDCA,VDDQ	2 210 25	mA

Conditions	Symbol	Power Supply	1333	Unit
All Bank Refresh Burst current: tCK = tCK(avg)min; CKE is HIGH between valid commands; tRC = tRFCabmin; Burst refresh; CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disabled	IDD5 ₁ IDD5 ₂ IDD5 _{IN}	VDD1 VDD2 VDDCA,VDDQ	30 149 7	mA
All Bank Refresh Average current:				
tCK = tCK(avg)min;				
CKE is HIGH between valid commands;	IDD5AB1	VDD1	4	
tRC = tREFI;	IDD5AB ₂	VDD2	10	mA
CA bus inputs are SWITCHING;	IDD5AB _{IN}	VDDCA,VDDQ	7	
Data bus inputs are STABLE				
ODT disabled				
Per Bank Refresh Average current:				
tCK = tCK(avg)min;				
CKE is HIGH between valid commands;	IDD5PB1	VDD1	4	
tRC = tREFI/8;	IDD5PB ₂	VDD2	10	mA
CA bus inputs are SWITCHING;	IDD5PB _{IN}	VDDCA,VDDQ	7	
Data bus inputs are STABLE				
ODT disabled				
Self refresh current (Standard Temperature Range): CK=LOW, CK=HIGH; CKE is LOW; CA bus inputs are STABLE; Data bus inputs are STABLE; Maximum 1x Self-Refresh Rate ODT disabled	IDD6 ₁ IDD6 ₂ IDD6 _{IN}	VDD1 VDD2 VDDCA,VDDQ	1 3.8 0.2	mA
Self refresh current (+85'C to +105'C): CK=LOW, CK=HIGH; CKE is LOW; CA bus inputs are STABLE; Data bus inputs are STABLE; ODT disabled	IDD6ET ₁ IDD6ET ₂ IDD6ET _{IN}	VDD1 VDD2 VDDCA,VDDQ	2.53 12 0.4	mA
Deep power-down current: CK=LOW, CK=HIGH; CKE is LOW; CA bus inputs are STABLE; Data bus inputs are STABLE; ODT disabled	IDD8 ₁ IDD8 ₂ IDD8 _{IN}	VDD1 VDD2 VDDCA,VDDQ	20 100 200	uA

Notes:

1. Published IDD values are the maximum of the distribution of the arithmetic mean.

2. ODT disabled: MR11[2:0] = 000B.

3. IDD current specifications are tested after the device is properly initialized.

4. Measured currents are the summation of VDDQ and VDDCA.

5. Guaranteed by design with output load of 5PF and RON = 400hm.

6. The 1x self refresh rate is the rate at which the device is refreshed internally during self refresh, before going into the extended temperature range.

7. This is the general definition that applies to full-array SELF REFRESH.

8. IDD6ET is typical values, is sampled only, and is not tested.

PASR	Supply	1333	Unit
Full Array	VDD1 VDD2 VDDCA,VDDQ	1 3.8 0.2	mA
1/2 Array	VDD1 VDD2 VDDCA,VDDQ	0.79 2.83 0.2	mA
1/4 Array	VDD1 1/4 Array VDD2 VDDCA,VDDQ		mA
1/8 Array	VDD1 VDD2 VDDCA,VDDQ	0.63 2.09 0.2	mA

IDD6 Partial Array Self-Refresh Current

Notes:

2. IDD values published are the maximum of the distribution of the arithmetic mean.

^{1.} IDD6 currents are measured using bank-masking only.

REFRESH Requirements by Device Density

LPDDR3 Refresh Requirement Parameters (per density)

Symbol	Parameter	4Gb(Single Die)	16Gb(Four Dies)	Unit
	Number of banks	8	3	
tREFW	Refresh window: TCASE =< 85'C	3	2	ms
tREFW	Refresh window: 1/2-Rate Refresh	1	6	ms
tREFW	Refresh window: 1/4-Rate Refresh	8		ms
R	Required number of REFRESH commands (MIN)	8192	8192	
tREFI	Average time between REFRESH commands (for	3.9	3.9	us
tREFIpb	reference only) TCASE <= 85'C	0.4875	0.4875	us
tRFCab	Refresh cycle time	130	130	ns
tRFCpb	Per-bank REFRESH cycle time	60	60	ns

LPDDR3 Read and Write Latencies

Parameter					Value	Unit
Max. Clock Frequency	166	400	533	600	667	MHz
Max. Data Rate	333	800	1066	1200	1333	MT/s
Average Clock Period	6	2.5	1.875	1.67	1.5	ns
Read Latency	3 ¹	6	8	9	10	tCK(avg)
Write Latency (Set A)	1 ¹	3	4	5	6	tCK(avg)
Write Latency (Set B) ²	1 ¹	3	4	5	8	tCK(avg)

Notes:

1. RL=3/WL=1 setting is an optional feature. Refer to MR0 OP<7>.

2. Write Latency (Set B) support is an optional feature. Refer to MR0 OP<6>.

AC Characteristics

(VDD2, VDDQ,VDDCA = 1.14~1.30V, VDD1 = 1.70~1.95V) Notes 1, 2, 3 and 4 apply to all parameters. Notes begin below table.

Parameter	Symbol	min/max	Speed Grade	Unit	
Parameter	Зушьог	mm/max	1333	Unit	
	I	Clock Timing	9		
Max. Frequency	fCK	~	667	MHz	
		min	1.5		
Average Clock Period	tCK(avg)	max	100	ns	
		min	0.45		
Average HIGH pulse width	tCH(avg)	max	0.55	tCK(avg)	
		min	0.45		
Average LOW pulse width	tCL(avg)	max	0.55	tCK(avg	
Absolute Clock Period	tCK(abs)	min	tCK(avg) min + tJIT(per) min	ps	
		min	0.43	tCK(avg)	
Absolute clock HIGH pulse width	tCH(abs)	max	0.57		
		min	0.43		
Absolute clock LOW pulse width	tCL(abs)	max	0.57	tCK(avg)	
Clock Period Jitter	tJIT(per),	min	-80		
(with supported jitter)	allowed	max	80	ps	
Maximum Clock Jitter between two consecutive clock cycles (with allowed jitter)	tJIT(cc), allowed	max	160	ps	
Duty cycle Jitter	tJIT(duty),	min	min((tCH(abs),min - tCH(avg),min), (tCL(abs),min - tCL(avg),min)) * tCK(avg)		
(with supported jitter)	allowed	max	max((tCH(abs),max - tCH(avg),max), (tCL(abs),max - tCL(avg),max)) * tCK(avg)	ps	
Cumulative error across 2 cycles	tERR(2per),	min	-118		
	allowed	max	118	ps	
Cumulative error across 3 cycles	tERR(3per),	min	-140		
	allowed	max	140	ps	
Cumulative error across 4 cycles	tERR(4per),	min	-155		
	allowed	max	155	ps	
Cumulative error across 5 cycles	tERR(5per),	min	-168		
	allowed	max	168	ps	
Cumulative error across 6 cycles	tERR(6per),	min	-177		
	allowed	max	177	ps	
Cumulative error across 7 cycles	tERR(7per),	min	-186		
	allowed	max	186	ps	

Dovomotor	Symbol	min/mov	Speed Grade	Unit	
Parameter	Symbol	min/max -	1333		
Cumulative error across 8 cycles	tERR(8per),	min	-193		
	allowed	max	193	ps	
Cumulative error across 9 cycles	tERR(9per),	min	-200		
	allowed	max	200	ps	
Cumulative error across 10 cycles	tERR(10per),	min	-205		
	allowed	max	205	ps	
Cumulative error across 11 cycles	tERR(11per),	min	-210		
	allowed	max	210	ps	
Cumulative error across 12 cycles	tERR(12per),	min	-215		
	allowed	max	215	ps	
Cumulative error across n = 13, 14, 15	tERR(nper),	min	tERR(nper),allowed min = (1 + 0.68ln(n)) * tJIT(per),allowed min		
9, 20cycles	allowed	max	tERR(nper),allowed max = (1 + 0.68ln(n)) * tJIT(per),allowed max	ps	
	ZQ Ca	libration Para	meters		
Initialization Calibration Time	tZQINIT	min	1	us	
Long Calibration Time	tZQCL	min	360	ns	
Short Calibration Time	tZQCS	min	90	ns	
Calibration Reset Time	tZQRESET	min	max(50ns,3nCK)	ns	
	Re	ad Parameter	rs ⁵	·	
		min	2500		
DQS output access time from CK/CK	tDQSCK	max	5500	ps	
DQSCK Delta Short	tDQSCKDS	max	265	ps	
DQSCK Delta Medium	tDQSCKDM	max	593	ps	
DQSCK Delta Long	tDQSCKDL	max	733	ps	
DQS - DQ skew	tDQSQ	max	165	ps	
DQS Output High Pulse Width	tQSH	min	tCH(abs) - 0.05	tCK(avg)	
DQS Output Low Pulse Width	tQSL	min	tCL(abs) - 0.05	tCK(avg)	
DQ / DQS output hold time from DQS	tQH	min	min(tQSH, tQSL)	ps	
Read preamble	tRPRE	min	0.9	tCK(avg)	
Read postamble	tRPST	min	0.3	tCK(avg)	
DQS low-Z from clock	tLZ(DQS)	min	tDQSCK(MIN) - 300	ps	
DQ low-Z from clock	tLZ(DQ)	min	tDQSCK(MIN) - 300	ps	
DQS high-Z from clock	tHZ(DQS)	max	tDQSCK(MAX) - 100	ps	
DQ high-Z from clock	tHZ(DQ)	max	tDQSCK(MAX) + (1.4 * tDQSQ(MAX))	ps	

Parameter	Symbol	min/max	Speed Grade	Unit
Parameter	Symbol	mmmax	1333	Unit
	W	rite Paramete	rs ⁵	L
DQ and DM input hold time (Vref based)	tDH	min	175	ps
DQ and DM input setup time (Vref based)	tDS	min	175	ps
DQ and DM input pulse width	tDIPW	min	0.35	tCK(avg)
		min	0.75	
Write command to 1st DQS latching transition	tDQSS	max	1.25	tCK(avg)
DQS input high-level width	tDQSH	min	0.4	tCK(avg)
DQS input low-level width	tDQSL	min	0.4	tCK(avg)
DQS falling edge to CK setup time	tDSS	min	0.2	tCK(avg)
DQS falling edge hold time from CK	tDSH	min	0.2	tCK(avg)
Write postamble	tWPST	min	0.4	tCK(avg)
Write preamble	tWPRE	min	0.8	tCK(avg)
	CKE	Input Param	eters	
CKE min. pulse width (high and low pulse width)	tCKE	min	max(7.5ns,3nCK)	tCK(avg)
CKE input setup time	tISCKE ¹⁴	min	0.25	tCK(avg)
CKE input hold time	tIHCKE ¹⁵	min	0.25	tCK(avg)
Command path disable delay	tCPDED	min	2	tCK(avg)
	Command A	ddress Input	Parameters ⁵	
Address and control input setup time	tISCA ¹⁶	min	175	ps
Address and control input hold time	tIHCA ¹⁶	min	175	ps
CS input setup time	tISCS ¹⁶	min	290	ps
CS input hold time	tIHCS ¹⁶	min	290	ps
Address and control input pulse width	tIPWCA	min	0.35	tCK(avg)
CS input pulse width	tIPWCS	min	0.7	tCK(avg)
B	oot Parameter	rs (10 MHz - 5	55 MHz) ^{16, 17, 18}	
		max	100	
Clock cycle time	tCKb	min	18	ns
CKE input setup time	tISCKEb	min	2.5	tCK(avg)
CKE input hold time	tIHCKEb	min	2.5	tCK(avg)
Address and control input setup time	tlSb	min	1150	ps
Address and control input hold time	tlHb	min	1150	ps
		min	2	
DQS output data access time from CK/CK	tDQSCKb	max	10	ns
Data strobe edge to output data edge	tDQSQb	max	1.2	ps

Parameter	Symbol	min/max –	Speed Grade	Unit
Farameter	Symbol		1333	
	Mode F	Register Paran	neters	
MODE REGISTER Write command period	tMRW	min	10	tCK(avg)
Mode Register Read command period	tMRR	min	4	tCK(avg)
Additional time after tXP has expired until MRR command may be issued	tMRRI	min	tRCD(MIN)	ns
	Co	re Parameters	20	•
Read Latency	RL	min	10	tCK(avg)
Write Latency (set A)	WL	min	6	tCK(avg)
Write Latency (set B)	WL	min	8	tCK(avg)
ACTIVE to ACTIVE command period	tRC	min	tRAS + tRPab (with all-bank Precharge) tRAS + tRPpb (with per-bank Precharge)	ns
CKE min. pulse width during Self-Refresh (low pulse width during Self-Refresh)	tCKESR	min	max(15ns,3nCK)	ns
Self refresh exit to next valid command delay	tXSR	min	max(tRFCab + 10ns,2nCK)	ns
Exit power down to next valid command delay	tXP	min	max(7.5ns,3nCK)	ns
CAS to CAS delay	tCCD	min	4	tCK(avg)
Internal Read to Precharge command delay	tRTP	min	max(7.5ns,4nCK)	ns
	tRCD(fast)		max(15ns,3nCK)	
RAS to CAS Delay	tRCD(typ)	min	max(18ns,3nCK)	ns
	tRCD(slow)		max(24ns,3nCK)	
	tRPpb(fast)		max(15ns,3nCK)	
Row Precharge Time(single bank)	tRPpb(typ)	min	max(18ns,3nCK)	ns
	tRPpb(slow)		max(24ns,3nCK)	
	tRPab(fast)		max(18ns,3nCK)	
Row Precharge Time(all bank)	tRPab(typ)	min	max(21ns,3nCK)	ns
	tRPab(slow)		max(27ns,3nCK)	
		min	max(42ns,3nCK)	ns
Row Active Time	tRAS	max	70	us
Write Recovery Time	tWR	min	max(15ns,4nCK)	ns
Internal Write to Read Command Delay	tWTR	min	max(7.5ns,4nCK)	ns
Active bank A to Active bank B	tRRD	min	max(10ns,2nCK)	ns
Four Bank Activate Window	tFAW	min	max(50ns,8nCK)	ns
Minimum Deep Power Down Time	tDPD	min	500	us

Parameter	Symbol	min/max	Speed Grade	Unit
Parameter	Symbol	IIIII/IIIdX	1333	
		min	1.75	
Asynchronous RTT turn-on dely from ODT input	tODTon	max	3.5	ns
		min	1.75	
Asynchronous RTT turn-off delay from ODT input	tODToff	max	3.5	ns
Automatic RTT turn-on delay after READ data	tAODTon	max	tDQSCK + 1.4 x tDQSQ,max + tCK(avg,min)	ps
Automatic RTT turn-off delay after READ data	tAODToff	min	tDQSCK,min - 300	ps
RTT disable delay from power down, self-refresh, and deep power down entry	tODTd	max	12	ns
RTT enable delay from power down and self refresh exit	tODTe	max	12	ps
	CA Tr	aining Param	neters	
First CA calibration command after CA calibration mode is programmed	tCAMRD	min	20	tCK(avg)
First CA calibration command after CKE is LOW	tCAENT	min	10	tCK(avg)
CA caibration exit command after CKE is HIGH	tCAEXT	min	10	tCK(avg)
CKE LOW after CA calibration mode is programmed	tCACKEL	min	10	tCK(avg)
CKE HIGH after the last CA calibration results are driven	tCACKEH	min	10	tCK(avg)
Data out delay after CA training calibration command is programmed	tADR	max	20	ns
MRW CA exit command to DQ tri-state	tMRZ	min	3	ns
CA calibration command to CA calibration command delay	tCACD	min	RU(tADR+2 x tCK)	tCK(avg)
	Write L	eveling Para.	meters	
DQS/DQS delay after write leveling mode is		min	25	
programmed	tWLDQSEN	max	-	ns
First DQS/DQS edge after write level-ing		min	40	
mode is programmed	tWLMRD	max	-	ns
Write loveling output delay	t\\\/! \C	min	0	
Write leveling output delay	tWLO	max	20	ns
Write leveling hold time	tWLH	min	205	ps
Write leveling setup time	tWLS	min	205	ps

Parameter	Symbol	min/max	Speed Grade	Unit		
r arameter	Gymbol	mmax	1333	Onic		
		min	max(14ns, 10nCK)			
Mode register set command delay	tMRD	max	-	ns		
	Temperature Derating ¹⁹					
DQS output access time from CK/CK (derated)	tDQSCK	max	5620	ps		
RAS-to-CAS delay (derated)	tRCD	min	tRCD + 1.875	ns		
ACTIVATE-to- ACTIVATE command period (derated)	tRC	min	tRC + 1.875	ns		
Row active time (derated)	tRAS	min	tRAS + 1.875	ns		
Row precharge time (derated)	tRP	min	tRP + 1.875	ns		
Active bank A to active bank B (derated)	tRRD	min	tRRD + 1.875	ns		

Notes for AC Electrical Characteristics

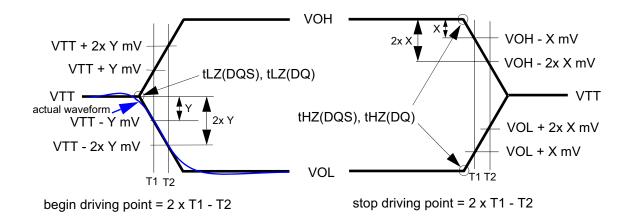
1. Frequency values are for reference only. Clock cycle time (tCK) is used to determine device capabilities.

- 2. All AC timings assume an input slew rate of 2 V/ns for single ended signals.
- 3. Measured with 4 V/ns differential CK_t/CK_c slew rate and nominal VIX.

4. All timing and voltage measurements are defined "at the ball".

5. READ, WRITE, and input setup and hold values are referenced to VREF.

6. tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a contig-uous sequence of bursts in a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design. Temperature drift in the system is < 10 'C/s. Values do not include clock jitter.


7. tDQSCKDM is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a 1.6us rolling window. tDQSCKDM is not tested and is guaranteed by design. Temperature drift in the system is < 10 'C/ s. Values do not include clock jitter.

8. tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a 32ms rolling window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system is < 10 'C/s. Values do not include clock jitter..

9. TFor LOW-to-HIGH and HIGH-to-LOW transitions, the timing reference is at the point when the signal crosses the tran-sition threshold (VTT). tHZ and tLZ transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters are not referenced to a specific voltage level but to the time when the device output is no longer driving (for tRPST, tHZ(DQS) and tHZ(DQ)), or begins driving (for tRPRE, tLZ(DQS), tLZ(DQ)). The figure below shows a method to calculate the point when device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signal at two different volt-ages. The actual voltage measurement points are not critical as long as the calculation is consistent.

10. Output Transition Timing

11. The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters tRPRE and tRPST are determined from the differential signal DQS/DQS.

12. Measured from the point when DQS/DQS begins driving the signal to the point when DQS/DQS begins driving the first rising strobe edge.

13. Measured from the last falling strobe edge of DQS/DQS to the point when DQS/DQS finishes driving the signal.

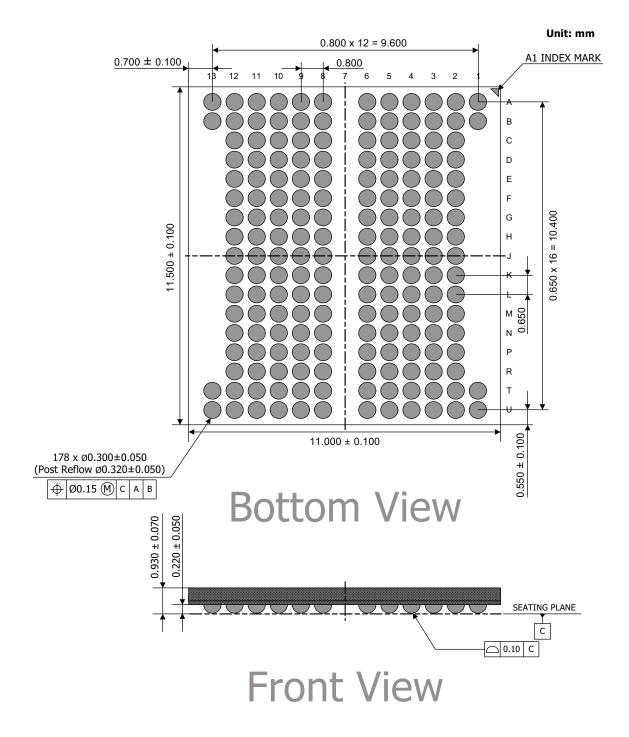
14. CKE input setup time is measured from CKE reaching a HIGH/LOW voltage level to CK/CK crossing.

15. CKE input hold time is measured from CK/CK crossing to CKE reaching a HIGH/LOW voltage level.

16. Input set-up/hold time for signal (CA[9:0], CS).

17. To ensure device operation before the device is configured, a number of AC boot-timing parameters are defined in this table. Boot parameter symbols have the letter b appended (for example, tCK during boot is tCKb).

18. The LPDDR3 device will set some mode register default values upon receiving a RESET (MRW) command as specified in Mode Register Definition.


19. The output skew parameters are measured with default output impedance settings using the reference load.

20. The minimum tCK column applies only when tCK is greater than 6ns.

Package Diagram

178-Ball FBGA - 11.0mm x 11.5mm 0.65mm/0.8mm pitch

PART NUMBERING SYSTEM

AS4C	512M32MD3	15	В	С	N
DRAM	512M32=512MX32 MD3=Mobile DDR3	15=667MHz	B = FBGA	C=Commercial (-25° C~+85° C)	Indicates Pb and Halogen Free

Alliance Memory, Inc. 511 Taylor Way, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211 www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.