74F132 Quad 2-Input NAND Schmitt Trigger

74F132 Quad 2-Input NAND Schmitt Trigger

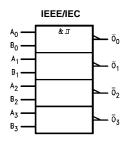
General Description

FAIRCHILD

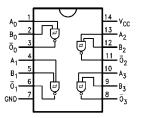
SEMICONDUCTOR

The F132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 2-input Schmitt Trigger followed by level shifting circuitry and a standard FAST™ output struc-


ture. The Schmitt Trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Code:


Order Number	Package Number	Package Description					
74F132SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow					
74F132SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74F132PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Function Table

Unit Loading/Fan Out

Din Nomoo	Description	U.L.	Input I _{IH} /I _{IL}		
F III Nailles	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
A _n , B _n	Inputs	1.0/1.0	20 µA/-0.6 mA		
Ōn	Outputs	50/33.3	–1 mA/20 mA		

Inp	uts	Outputs			
Α	В	o			
L	L	Н			
L	Н	н			
Н	L	н			
н	Н	L			

H = HIGH Voltage Level L = LOW Voltage Level

FAST® is a registered trademark of Fairchild Semiconductor Corporation

© 2000 Fairchild Semiconductor Corporation DS009477

74F132

Absolute Maximum Ratings(Note 1)

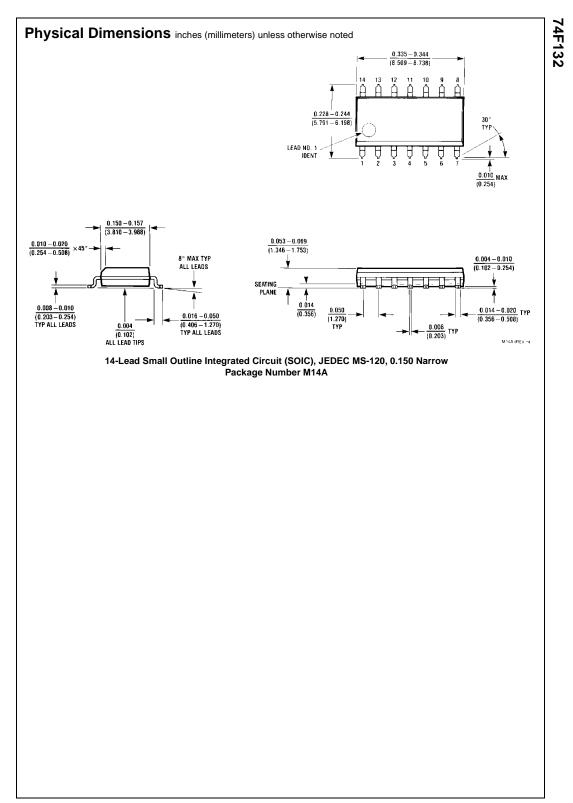
Storage Temperature	-65°C to +150°C				
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$				
Junction Temperature under Bias	-55°C to +150°C				
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V				
Input Voltage (Note 2)	-0.5V to +7.0V				
Input Current (Note 2)	-30 mA to +5.0 mA				
Voltage Applied to Output					
in HIGH State (with $V_{CC} = 0V$)					
Standard Output	–0.5V to V _{CC}				
3-STATE Output	-0.5V to +5.5V				
Current Applied to Output					
in LOW State (Max)	twice the rated I _{OL} (mA)				
ESD Last Passing Voltage (Min)	4000V				

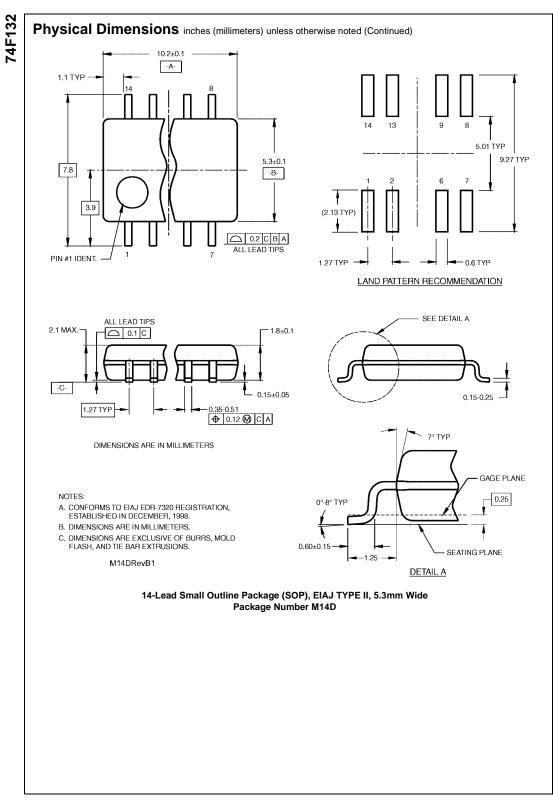
Recommended Operating Conditions

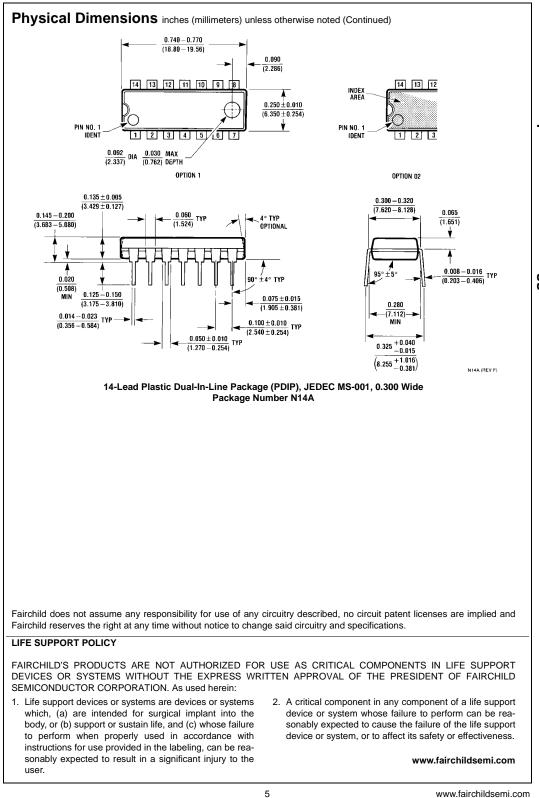
Free Air Ambient Temperature
Supply Voltage

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions
V _{T+}	Positive-going Threshold		1.5		2.0	V	5.0	
V _{T-}	Negative-going Threshold		0.7		1.1	V	5.0	
ΔV_T	Hysteresis (V _T ⁺ – V _T ⁻)		0.4			V	5.0	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
IIH	Input HIGH Current				5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdow	/n Test			7.0	μA	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Curren	t			50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current				3.75	μA	0.0	V _{IOD} = 150 mV
					5.75			All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{CCH}	Power Supply Current				17.0	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current				18.0	mA	Max	$V_{O} = LOW$

AC Electrical Characteristics

Symbol		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = 0^\circ C$	Units		
	Parameter				V _{CC} = +5.0V C _L = 50 pF			
								Min
	t _{PLH}	Propagation Delay	4.0		10.5	3.5	12.0	ns
t _{PHL}	A_n , B_n to \overline{O}_n	5.0		12.5	5.0	13.0		

74F132 Quad 2-Input NAND Schmitt Trigger